
August 1991

No part of this publication may be copied , transmitted or stored
in a retrieval system or reproduced in any way including but not
limited to photography, photocopy, magnetic or other recording
means, without prior written permission from the publishers, with
the exception of material entered and executed for the reader's
own use.

This version created for ST FORMAT.

THIS IS NOT PUBLIC DOMAIN. FULL COPYRIGHT REMAINS IN FORCE.

MARCH 1992

Copyright 1991 GFA Data Media (UK) Ltd

Published by: GFA Data Media (UK) Ltd
 Box 121
 Wokingham
 Berkshire
 RG11 5XT

Special Offer to ST Format Readers

This document is over 129 pages if printed on A4. We have
documented all GFA-BASIC commands. All commands are also
contained in the full GFA-BASIC REFERENCE manual which contains
much more information than is contained in this 'brief' document.
Most commands are fully explained with an example program.

You can obtain the FULL documentation, normally sold for 50.00
pounds for only 25.00 pounds (plus 5.00 postage). All orders must
be returned direct to GFA, using the special coupon in the issue
of ST Format that this disk was supplied with.

Also you can obtain the GFA-BASIC Compiler 3.5 and manual for only
20.00 (plus postage of 5.00). (normally 30.00). The compiler
manual contains 48 pages. You will need the compiler to produce
desk top accessories and link C and assembler code into your GFA-
BASIC programs.

Or order both the Interpreter and Compiler for only 45.00 (plus
5.00 postage) which would normally retail for 80.00.

Please make Cheques and Postal Orders payable to GFA-DATA
MEDIA (UK) LTD. We also can accept VISA and ACCESS credit cards.

TECHNICAL SUPPORT

Technical Support is only available to users who have purchased
the full GFA-BASIC 3.5 Interpreter. All technical problems should
be sent to GFA in writing, enclosing a stamped addressed envelope,
and quoting their registration card number (supplied with each
purchased product). Sorry but we are unable to supply technical
support to users who are unable to quote their registration

number.

Now to the documentation:

Introduction

Welcome to GFA-BASIC. With the GFA-BASIC interpreter you now have
the opportunity to explore the Atari ST, and create professional
programs.

We believe that GFA is the best programming language available,
not just for the Atari ST, but also for the Amiga, MS-DOS and
Windows 3.0/3.1. When you have quickly mastered GFA-BASIC for the
Atari ST, you can transport your program to any PC running either
MS-DOS or Windows (and soon OS/2 and Unix!). This means that you
will only need to learn one language for all these different
machines and operating systems.

This manual contains all the GFA-BASIC 3.5 command descriptions
and syntax. This manual is an edited version of the full reference
manual (which is over 540 pages) and is a reference manual for the
GFA-BASIC commands only. The full reference manual contains
example programs for most of the commands and reference material
for the Atari BIOS, XBIOS and GEMDOS.

This manual is a reference manual for the GFA-BASIC commands. It
does not attempt to teach you to program, there are other books
available for this purpose. Neither does this edited manual does
not document the hardware or operating system features of the
Atari.

This is the GFA-BASIC Interpreter. There are many more products in
the GFA range to help you develop your programs. Please contact
your distributor or GFA for more information and prices of these
products.

GFA-BASIC Interpreter Reference Manual (Full version)

This loose leaf manual has over 540 pages, dealing with each
command with a full description an example. The Atari system
routines, GEMDOS, AES, VDI and GDOS are all described. The Line-A
call is also described (although Line-A is now declared as un
supported by Atari). Just about every useful table is presented in
this manual, including GFA-BASIC error messages, Bomb Error
messages, TOS Error messages, Scan code table, ASCII tables, Fill
and style patterns, and VT-52 control codes.

GFA-BASIC Compiler

The GFA-BASIC Compiler will compile your interpreter code into
fast stand alone programs. Desk top accessories can also be easily
created. The GFA-BASIC Compiler also has options for optimising
code for either speed or size. External code, either C or
assembler can also be linked into your programs using the GFA-
BASIC Compiler. The manual (48 pages) fully explains how to create
a desk top accessory with examples. The compiler also supports the
Atari TT, allowing code to be compiled for either ST or TT ram.

GFA-BASIC Software Development Book

This book covers in depth structured programming, debugging
routines, Line A calls, Assembly routines, AES functions and GDOS.

Special attention is paid to dialog boxes and their creation. This
book is over 341 pages and is supported by a disk containing the
many examples of source code discussed within the book.

GFA GEM Utility Pack

THE GEM GUP is a framework of GFA-BASIC 3 routines that you can
merge into your own programs. GUP takes the responsibility of
managing the intricate GEM interface, leaving the programmer to
concentrate on the main program logic. The example program
supplied demonstrates how easy it is to create alternative icons,
and use up to 5 different window types. The demonstration also
shows how to use all the GEM gadgets, including scroll bars, title
bar, info bar, grow box, grab bar etc. GFA GUP is a quick start to
programming GEM. GUP is supplied with a 60 page manual and disk,
fully documenting all of the GEM routines.

GFA Assembler

An integrated development tool for the Atari ST/STE, comprising
editor, macro assembler, linker and debugger. Supports multiple
window, file compare, background assembly. Editor checks syntax
of machine code on entry, hence ideal for programmers new to
assembly language. Also creates files that can be loaded directly
into GFA-BASIC.

GFA-Basic and Assembler User Book

This book covers all that you will need to know in interfacing
assembler routines into GFA-BASIC on the Atari ST/STE. Includes
an introduction into assembly programming, creation of desk top
accessories, graphic manipulation. Book (364 pages) plus disk.

GFA G-Shell

Professional development shell for GFA-BASIC Interpreter and
Compiler on the Atari ST/STE and TT.
GFA-GShell allows the programmer to skip between Interpreter and
Compiler and other programs, such as an assembler and resource
editor. Supports make facility and on line help files. If you
are using GFA-BASIC Interpreter and Compiler professionally, then
GFA-GShell will improve your productivity.

GFA-DRAFT 3.2

Powerful and comprehensive, yet easy to use CAD software for
Atari ST/STE and Atari TT. Runs in both high and medium resolu-
tions. Icon and menu driven commands. There are symbol libraries
for electrical, electronic users and architects. Libraries of
symbols are also easy to create.

A program/macro interface (using GFA BASIC) will enable you to
create complex forms and repetive patterns. Exports: HPGL, DXF
and GEM files. Will support almost any model of printer or
plotter. GFA-Draft Plus 3.2 also supports the Atari laser
printer.

These GFA products and others are available from:

GFA Data Media (UK) Ltd
Box 121

Wokingham
Berkshire
UK RG11 5XT

Sales Line Only Tel: 44 (0)734 794941
 Fax: 44 (0)734 890782

Using GFA-BASIC for the first time

The GFA-BASIC program disk is not copy protected, so before you do
anything else, make a copy and store the original disk in a safe
place.

GFA-BASIC is started by double clicking on the program file icon
GFABASIC.PRG. After a short while the Editor screen will be
displayed, which is where you can write and debug your programs.
Lets now try entering an example program. Enter the following
program lines, pressing the RETURN key at the end of each line.

DEFFILL 1,2,8
REPEAT
 WHILE MOUSEK=1
 PBOX MOUSEX,MOUSEY,MOUSEX+30,MOUSEY+30
 WEND
UNTIL MOUSEK=2

In the upper right hand corner of the editor screen you will find
the RUN menu item. Click the RUN button or press Shift and F10
keys together and the example program will start. A simple program
showing the use of the mouse. Move the mouse while holding down
the left button. End the program by pressing the right mouse
button. Press the Return key to end the program. The program could
also have been stopped by pressing the CONTROL, SHIFT and
ALTERNATE keys all at the same time. You will now be returned to
the editor.

GFA-BASIC does not need line numbers. It is bad programming
practice to say GOTO 10. If you must use GOTO, then use:

GOTO label
...
label:

GFA-BASIC offers you the chance to create structured programs, and
indented in such a way to enable easy documentation and
understanding of program flow.

How to proceed from here. We suggest you first become familiar
with the GFA-BASIC Interpreter's editor. Then load some of the
demonstration programs from the disk and run these. Experiment
with these programs by changing the values of variables to see the
effect. The next step really depends upon the individual, your
knowledge of the Atari, your knowledge of programming and your
program requirements. What ever your experience or requirements,
GFA-BASIC is the best documented programming language available
for the Atari ST, and there are several books and development aids
to help you.

The Editor

THE GFA-BASIC Editor has been specially designed for program
development. Syntax errors are recognised as you type the commands
in, and in addition the commands are indented automatically.

Only one instruction per line is allowed, but a comment may be
added to the end of a line by beginning the comment with a ! mark.

Program lines may be up to 255 characters long, but when a line
exceeds 80 characters, the line will scroll.

Cursor Keypad

Left arrow moves cursor left one character
Right arrow moves cursor right one character
Up arrow moves cursor up one line
Down arrow moves cursor down one line

Insert Inserts a blank line
ClrHome moves cursor to top left corner
Ctrl ClrHome moves cursor to start of program listing

Help With the help key procedures and functions can
 be folded and unfolded. Move the cursor to the
 start of a procedure or function and then
 press Help. The procedure will the fold down
 to a single line

Numeric Keypad

Ctrl 4 moves cursor left one character
Ctrl 6 moves cursor right one character
Ctrl 8 moves cursor up one line
Ctrl 2 moves cursor down one line
Ctrl 7 jumps to start of program
Ctrl 1 jump to end of program
Ctrl 9 move one page up
Ctrl 3 move one page down
Ctrl 0 Inserts a line
Ctrl . deletes a line

The numeric keypad can be swithed to a mode where it is not
required to press the Ctrl key. This mode is toggled on and off by
pressing Ctrl and - on the numeric keypad.

Delete deletes character at cursor position
Backspace deletes character to left of cursor
Tab moves cursor right eight characters
Ctrl Tab moves cursor left eight characters
Return moves cursor to start of next line
Enter moves cursor to start of next line
Escape enter Direct Mode

Further editor commands

Ctrl Delete deletes line which cursor is on
Ctrl U un-deletes line
Ctrl Y deletes line which cursor is on
Ctrl N inserts blank line

Ctrl Q call Block menu (as F4)
Ctrl B mark start of block
Ctrl K mark end of block
Ctrl R Page up
Ctrl C Page down
Ctrl E replace text
Shift Ctrl E find replace text
Ctrl F find text
Ctrl left arrow cursor to start of line
Ctrl right arrow cursor to end of line
Ctrl up arrow page up
Ctrl down arrow page down
Ctrl Clr Home cursor to start of program
Ctrl P delete character right of cursor
Ctrl O undelete text deleted with Ctrl P
Ctrl Z cursor to end of program
Ctrl Tab cursor left eight characters
Ctrl G move to line number display

Editor marks

Ctrl n where n= 0 to 6 will mark a position
Alt n will jump to marked position n, except:

Alt 7 cursor to last cursor position before RUN
Alt 8 to start of program
Alt 9 cursor to start of last search
Alt 0 cursor to position of last change

Menu Bar

Atari Logo

This leads to a GEM menu bar:

Save

A file select box will appear, and a program can be saved by
entering a name and selecting OK.

Load

A file select box will appear, and a program can be selected and
loaded into the editor.

Deflist

See the DEFLIST command.

New Names

The editor will warn you if you enter a new variable name.

Editor

Returns you to the editor.

Load (F1)

Load a GFA-BASIC 3 .GFA tokenised file.

Save (Shift F1)

Save the program as a tokenised .GFA file.

Merge (F2)

Load an ASCII text file into the editor at the cursor position.
The existing program in the editor is not erased.

Save,A (Shift F2)

Save the program in memory in ASCII format. The extension .LST
will be added to the file name. If the file already exists the old
file will be changed to .BAK.

Llist (F3)

This command controls the output of the print out. These Dot
commands have no effect on the running of the program and only
affect the printout:

.ll xx Max line length

.pl xx Max page length

.ff xxx Form feed character for printer

.he text Text to appear on first line of each page

.fo text Text to appear on last line of each page

.lr xx Left margin

.l- Switch dot commands off

.l+ Switch dot commands on (default)

.n1 to .n9 Switch on line numbers up to 9 characters

.n0 Switch off line numbers

.PA Force form feed

.P- Do not list dot commands

.P+ List dot commands

In the header and footer text, the following can also be inserted:

\xxx The ASCII character xxx
\d Date
\t Time
Page number

To print the symbols \ and ##, use \\ and \ respectively.

Quit (Shift F3)

Results in Do you really want to quit message. If Yes selected,
thenyou will return to the desktop.

Block (F4)

If no block marked then message Block ??? will appear. If a block
has been selected using the BlkSta and BlkEnd then the block menu
will appear:

Copy

Copies the block to current cursor position.

Move

Moves the block to current cursor position.

Write

Saves the block as an ASCII file (.LST)

Llist

Prints the block out to printer

Start

Moves the cursor to start of block

End

Moves the cursor to end of block

Del

Deletes the block

Hide

Removes the block marker

Clicking the mouse outside the Block menu or pressing a key also
removes the block marker.

New (Shift F4)

The program currently in the editor is erased from memory.

Blk End (F5)

The line before the cursor is marked as the end of block. If the
start of block marker is located before this line, the block is
shown in a different colour (or dotted background on a monochrome
screen). Also actioned with Ctrl K.

Blk Sta (Shift F5)

Marks the beginning of a block as above. Also actioned with Ctrl
B.

Find (F6)

Enter a text string to be searched for. If the string is found,
the search cab be continued with Ctrl F or Ctrl L. Also actioned
with Shift Ctrl F or Shift Ctrl L.
Folded procedures and functions are not searched.

Replace (Shift F6)

This function will replace one string of text by another. Input
the text to be replaced, then the replacement text. On finding an
occurrence, the actual replacement can be effected with Ctrl E.
Also activated with Shift Ctrl E.

Pg down (F7)

Scrolls the screen down one page. Also activated with Ctrl C.

Pg Up (Shift F7)

Scrolls the screen up one page. Also activated with Ctrl R.

Insert/Overwr (F8)

Switches between insert and overwrite.

Txt16/Text8 (Shift F8)

Only on monochrome monitor. Either 16 pixel high characters or 8
pixel high characters will provide 23 or 48 lines on the screen
respectively.

Flip (F9)

Flip between Edit and Output screen. Press any key to return to
the Edit screen

Direct (Shift F9)

Switch to Direct mode, where commands will be actioned
immediately. Some commands, such as loop commands are not
available in direct mode. Direct mode can also be entered by
pressing Esc key. The last 8 commands entered in direct mode are
remembered and can be recalled using the up and down arrow keys.
The Undo key will recall the last command.

A procedure can be called from direct mode.

Test (F10)

Tests all loops, subroutines and conditional instructions for
consistency without running the program.

Run (Shift F10)

The program in the editor memory is started. A running program can
be interrupted using Ctrl Shift Alt keys together.

Clock Display

The clock can be set by clicking on the clock and entering a new
time.

Line Numbers

Clicking on the line number box (beneath the clock) allows you to
enter a line number. On input the cursor will jump to this line
number. Also activated with Ctrl G.

COMMANDS AND FUNCTIONS
======================

The following commands and functions have been sorted by alphabetical
order. Each entry describes the command syntax and the action of the
command. Some of the more complex commands have examples. The full
GFA-BASIC Interpreter Reference manual contains examples for most of

the commands. The advanced commands such as the operating system calls
BIOS, GEMDOS and XBIOS are not covered here and should be consulted in
the GFA-BASIC Interpreter Reference manual.

*
Syntax: *y
Action: returns the address of variables, but for strings or arrays
 the address of the descritpor is returned. (ARRPTR is the
 same as *).

+
Syntax: a$+b$
Action: Concatenation operator, to add strings together.

+ Arithmetic operator (a+b adds a and b).
* a*b (a times b).
/ a/b (a divided by b).
^ a^b (a to the power b).
<> a<>b (a not equal b).
<= a<=b (a less than or equal to b).
>= a>=b (a greater than or equal to b).

==
Syntax: a==b
Action: Comparison operator for approximately equal 'a' and 'b' are
 numeric expressions. The == operator is used in the same way
 as a comparison with = but only 28 bits of the mantissa are
 compared i.e. about 8.5 digits.

@
Syntax: @FRED
Action: GOSUB PROCEDURE fred (@ is synonymous with GOSUB).

ABS
Syntax: ABS(X)
Action: Returns the absolute value of a number. (see also SGN).

ABSOLUTE
Syntax: ABSOLUTE x,y
Action: Assigns the address y to the variable x.

ACHAR
Syntax: ACHAR code,x,y,font,style,angle
Action: ASCII characters value 'code' are displayed at the graphics
 location x,y.
 Font can be:
 0 = 6x6 (Icon font).
 1 = 8x8 (Normal colour font).
 2 = 8x16 (Normal monochrome font).
 Larger values are taken to be the font header address of a
 GDOS font.
 Text type (bold, faint etc. 0-31) and output angle
 (0,900,1800,2700) can be specified.

ACLIP
Syntax: ACLIP flag,xmin,ymin,xmax,ymax
Action: To define a 'clipping' rectangle to which LINE-A screen
 output will be limited.
 Flag 0 = clipping off, non zero = on.

ACOS

Syntax: ACOS(x)
Action: Returns the arc-cosine (in radians) of x.

ADD(x,y)
Syntax: z%=ADD(x%,y%)
Action: Integer addition.

ADD
Syntax: ADD x,y
Action: Increase value of variable x by y.

ADDRIN
Syntax: address of the AES Address Input block.
 With an index after this function, the appropriate
 parameter block is accessed directly.
 ADDRIN(2)=x is the same as
 LPOKE ADDRIN+2,x

ADDROUT address of the AES Address Output block, see above.

AFTER ticks GOSUB proc (see also EVERY).
AFTER CONT
AFTER STOP
 Procedures can be called after the expiry of a set time.
 Time in ticks (200ths of a second).
 To continue the process, use CONT, and to stop
 use STOP.

ALERT
Syntax: ALERT a,message$,b,button$,var
Action: Creates an alert box
 'a' chooses type of alert symbol, 0=none, 1=!, 2=?, 3=stop
 'message$' Contains main text.
 Up to 4 lines of 30 characters/line
 lines are separated by the '|' symbol (Shift \).
 'button$' Contains text for the buttons 'B'.
 'b' is the button to be highlighted (0,1,2,3)
 to be selected by just pressing return.
 'var' This variable is set to the number of the button
 selected.

Example: ALERT 1,"Pick a|button",1,"Left|Right",a%
 ALERT 0,"You pressed|Button"+STR$(a%),0,"OK",a%

ALINE
Syntax: ALINE x1,y1,x2,y2,f,ls,m
Action: Draw a line using LINE A. x1,y1 are the start coordinates
 x2,y2 end of line. f = colour (0-15). ls = line style in 16
 bit information, (solid, dashed, dotted ..).
 m mode
 0 Replace
 1 Transparent
 2 Inverted
 3 Inverted transparent

AND
Syntax: x AND y
Action: Logical operator, performs a logical AND, results in a true
 or false result.
AND()
Syntax: AND(x,y)

Action: See AND above.

APOLY TO
Syntax: APOLY adr_pnt,num_pnt,y0 TO y1,f,m,addr,num_pattern
Action: Similar to POLYFILL, draws a sequence of joined lines, with
 'num_pnt' corners, and fills the resulting area with a user
 defined pattern. 'adr_pnt' is the address of the array
 holding the alternating x,y corner coordinates. 'num_pnt'
 is the number of points. y0 and y1 specify the highest and
 lowest part of the screen where filling can occur. The
 parameters f,m,addr,num_pattern are the same as for HLINE.

APPL_EXIT
Syntax: APPL_EXIT()
Action: Informs the system prog has finished - this is a dummy
 function as QUIT or SYSTEM do this automatically.

APPL_FIND
Syntax: APPL_FIND(fname$)
Action: Returns the ID of the sought after application. Either
 returns the apps ID or -1 if it cant be found. fname$ is an
 8 character filename - without extension.

Example: PRINT APPL_FIND("CONTROL")

 prints -1 if it cant find the CONTROL.ACC, or
 returns it's ID [2].

APPL_INIT
Syntax: APPL_INIT()
Action: Announce the program as an application.

APPL_READ
Syntax: APPL_READ(id,len,adr_buffer)
Action: Instruction bytes can be read from the event buffer.
 id - id of the application from whose buffer reading is to
 be done.
 len - number of bytes to read.
 adr_buffer - address of the buffer.

APPL_TPLAY(mem,num,speed)
APPL_TRECORD(mem,num)
 APPL_TRECORD makes a record of user activities, and TPLAY
 plays these back at the specified speed (1 - 1000).
 * ONLY VALID on TOS 1.4 and above. *

APPL_WRITE
Syntax: APPL_WRITE(id,len,adr_buffer)
Action: Bytes are written to the event buffer. SEE APPL_READ.

ARECT
Syntax: ARECT x1,y1,x2,y2,f,m,addr,num_pattern
Action: Similar to PBOX, x1,y1 and x2,y2 are opposite corners of a
 rectangle. The parameters f,m,addr,num_pattern are the same
 as for HLINE.

ARRAYFILL
Syntax: ARRAYFILL x(),n
Action: Assigns the value 'n' to all elements of a field array
 x().

ARRPTR

Syntax: ARRPTR(x)
Action: Finds the address of the (6 byte long) descriptor of
 a string or field. (Same as *x)

ASC
Syntax: ASC(x$)
Action: Finds the ascii code of the first character of a string.

ASIN
Syntax: ASIN(x)
Action: Returns the arc-sine (in radians) of x.

ATEXT
Syntax: ATEXT x,y,font,s$
Action: Output text at x,y coordinates using A LINE.

ATN
Syntax: ATN(x)
Action: Returns the arc tangent of x.

BASEPAGE
Syntax: BASEPAGE
Action: Returns the address of the basepage of GFA-Basic.

BCHG(x,y)
BCLR(x,y)
 Allow setting and resetting of bits.
 BCLR sets the y-th bit of x to zero.

BGET
Syntax: BGET #i,adr,cnt
Action: Reads from a data channel into an area of memory

 'i' \
 'adr' -- integer expressions.
 'cnt' / 'i' is the channel number.
 'cnt' bytes are read in and stored in memory
 starting at address 'adr'
 Unlike BLOAD, several different areas of memory can be
 read from a file.

BIN$
Syntax: BIN$(x[,n])
Action: Changes value of 'x' to a string containing the binary
 value of 'x'. The optional parameter 'n' specifies the
 number of character positions to be used (1 to 32).

BIOS
Syntax: BIOS(n[,x,y])
Action: To call the BIOS routine. The optional parameter list can
 be prefixed with W: or L: to denote word or longword
 parameters. (if non given, default is W:)
Example:
 REPEAT
 UNTIL BIOS(11,-1) AND 4

 Waits for the Control key to be pressed.

 Please refer to GFA-BASIC Interpreter Manual for full list
 of BIOS calls.

BITBLT

Syntax: BITBLT s%(),d%(),p%()
Action: Raster copying command similar to GET and PUT but
 more flexible and faster for some applications.
 's%' the description of the source raster
 'd%' the description of the destination raster
 'p%' co-ordinates of the two equally sized rectangles
 and the copying mode (see PUT).

BLOAD/BSAVE
Syntax: BLOAD "filename" [,address]
 BSAVE "filename",address,length
Action: Load and save memory from and to disc drive.

Example: DEFFILL 1,2,4
 PBOX 100,100,200,200
 BSAVE "RECT.PIC",XBIOS(2),32000
 CLS
 PRINT "IMAGE STORED. Press a key to continue"
 ~INP(2)
 CLS
 BLOAD "RECT.PIC",XBIOS(2)

BMOVE
Syntax: BMOVE scr,dst,cnt
Action: Fast movement of memory blocks.
 'scr' is the address at which the block to be moved
 begins.
 'dst' is the address to which the block is to moved
 'cnt' is the length of the block in bytes.

BOUNDARY
Syntax: BOUNDARY n
Action: Uses function vsf_perimeter to switch off (or on) borders
 on filled shapes (PBOX, PCIRCLE ..). If n is zero - no
 border, n - non zero = border.
BOX
Syntax: BOX x,y,xx,yy
Action: Draws a rectangle with corners at (x,y) and (xx,yy)

BPUT
Syntax: BPUT #n,adr,cnt
Action: Reads from an area of memory out to a data channel.
 'n' is a channel number.
 'adr' is start address of memory to read from.
 'cnt' bytes are read from address.

BSAVE See BLOAD

BSET(x,y) Allows setting and resetting of bits.
BTST(x,y) BSET sets the y-th bit of x to 1.
 BTST results in -1 (TRUE) if bit y of x is set.

Example: x=BSET(0,3)
 PRINT x,BSET(0,5)

BYTE(x) Returns the lower 8 bits of the numerical expression x.
 (See also CARD(), WORD()).

BYTE{x} As a function eg. y=BYTE{x} one can read the contents of
 the address x. As a command one writes to address x. eg.
 BYTE{x}=y. This is similar to PEEK and POKE but is not done
 in supervisor mode. (See also CARD{}, INT{}, LONG{}, {},

 FLOAT{}, SINGLE{}, DOUBLE{}, CHAR{}).

C:
Syntax: C:addr([x,y,....L:x, w:y])
Action: Calls a C or assembler program with parameters as in C. The
 parameters can be sent as 32-bit long words or 16-bit words
 to the subroutine. eg. a%=C:adr%(L:x,W:y,z) leads to the
 following situation on the stack:
 (sp) ->return address (4bytes)
 4(sp) ->x (4 bytes)
 8(sp) ->y (2 bytes)
 10(sp) ->z (2 bytes)
 The value returned by the call is the contents of D0.

CALL
Syntax: CALL addr([x,y,....L:x, w:y])
Action: Calls a machine code or C subroutine at address 'addr'.
 When the call is made, the return address is on the top of
 the stack, followed by the number of parameters as a 16-bit
 word, then the address of the parameter list as a 32-bit
 word.

CARD(x) Returns the lower 16 bits of the numerical expression x.
 (See also BYTE, WORD).

CARD{x} Reads/writes a 2-byte unsigned integer (similar to
 DPEEK/DPOKE). (See also BYTE{}, INT{}, LONG{}, {},
 FLOAT{}, SINGLE{}, DOUBLE{}, CHAR{}).

CASE See SELECT.

CFLOAT(x) Changes the integer x into a floating point number. (See
 also CINT).

CHAIN
Syntax: CHAIN f$
Action: Loads a GFA Basic program file into memory and starts it
 immediately it is loaded. If no extension is given '.GFA'
 is assumed.

Example: CHAIN "A:\EXAMPLE.GFA"

CHAR{x} Reads a string of bytes until a null byte is encountered,
 or writes the specified string of bytes and appends a null
 byte.

Example: PRINT CHAR{BASEPAGE+129} prints the command line.

CHDIR
Syntax: CHDIR "directory name"
Action: Changes the current directory.

Example: CHDIR "B:\TEST"

CHDRIVE
Syntax: CHDRIVE n or n$
Action: Sets the default disk drive 0=current, 1=A, 2=B etc.

Example: CHDRIVE 1
 PRINT DFREE(0)
 PRINT DIR$(2)
 CHDRIVE "C:\"

CHR$(x) Returns the character from a specified ASCII code.

Example: PRINT CHR$(65) !PRINTS A

CINT(x) Changes a floating point number into a rounded integer.
 (See also CFLOAT).

CIRCLE
HOW: CIRCLE x,y,r[,w1,w2]
Action: Draws a circle with centre coordinates at x,y and a radius
 r. Additional start and end angles w1 and w2 can be
 specified to draw a circular arc.

Example: CIRCLE 320,200,100

CLEAR
Syntax: CLEAR
Action: Clears all variables and fields.

CLEARW
Syntax: CLEARW n
Action: Clears the contents of the window numbered 'n'

CLIP x,y,w,h [OFFSET x0,y0]
CLIP x1,y1 TO x2,y2 [OFFSET x0,y0]
CLIP #n [OFFSET x0,y0]
CLIP OFFSET x,y
CLIP OFF

 This group of commands provide 'Clipping' functions,ie. the
 limiting of graphic display within a specified rectangular
 screen area.
 The command CLIP x,y,w,h defines the clipping rectangle
 starting at upper left coordinates x,y and extends w wide
 and h high.
 The next command CLIP .. TO .. allows input of the
 diagonally opposite corners of the clipping rectangle.
 The third variant makes it possible to dfine the limits of
 the window 'n'. The optional additional command OFFSET
 x0,y0 makes it possible to redefine the origin of the
 graphic display. If used in its own right this command sets
 the origin for graphic display at x0,y0.
 The command CLIP OFF turns clipping off.

CLOSE
Syntax: CLOSE [#n]
Action: Close a data channel or a channel to a previously OPENed
 device. If the channel number is omitted, all opened
 channels are closed.

CLOSEW
Syntax: CLOSEW n
Action: Closes the window numbered n.

CLR
Syntax: CLR var [,var]
Action: Deletes and sets specified variables (not arrays) to 0.

CLS
Syntax: CLS [#n]
Action: Clears the screen [numbered n].

COLOR
Syntax: COLOR color
Action: Sets the colour for drawing/text. (0-15).

COMBIN
Syntax: z=COMBIN(n,k)
Action: Calculates the number of combinations of n elements to the
 kth class without repetitions. Defined as z=n!/((n-k)!*k!).

CONT
Syntax: CONT
Action: Resumes execution of a program.
 Continue the execution of a program after interruption.

CONTRL Address of the VDI control table.
 With an index after this function, the appropriate
 parameter block is accessed directly.
 CONTRL(2)=x is the same as
 DPOKE CONTRL+4,x

COS
Syntax: COS(x)
Action: Returns the cosine of value x (radians)

COSQ(x) Returns the cosine of value x from an internal table in
 steps of 16th of a degree so is 10 times faster than COS.
 (in degrees).

CRSCOL CRSLIN
Syntax: CRSCOL
 CRSLIN
Action: Returns current cursor line and column. (see also PRINT
 AT).

CURVE
HOW: CURVE x0,y0,x1,y1,x2,y2,x3,y3
Action: The BEZIER-Curve starts at x0,y0, and ends at x3,y3.
 The curve at x0,y0 is at a tangent with a line from
 x0,y0 to x1,y1; and at x3,y3 is at a tangent with
 a line between x3,y3 and x2,y2.

Example:
 x0=10
 y0=10
 x1=50
 y1=110
 x2=150
 y2=200
 x3=350
 y3=300
 LINE x0,y0,x1,y1
 LINE x2,y2,x3,y3
 CURVE x0,y0,x1,y1,x2,y2,x3,y3

CVI CVL CVS CVF CVD
Syntax: CVI(x$) CVD(x$)
Action: Changes character strings into numeric variables.
 CVI Changes a 2-byte string into an integer
 CVL " " 4-byte " " " "
 CVS " " 4-byte basic string into a floating point number

 CVF " " 6-byte " " " a GFA 1 or 2 "
 CVD " " 8-byte " " " a GFA 3 floating point.

DATA
Syntax: DATA [CONST[,CONST] ...]
Action: Used as memory variables which can be read by the READ
 command. The constants are separated by commas.

Example: For i=1 to 3
 READ A
 PRINT A
 Next i
 DATA 1,2,3,4

DATE$
Syntax: DATE$
Action: Returns the system date.

 DATE$=date$ Sets the system date. (either DD.MM.YY
 (UK) orMM.DD.YY (US)
 The format depends on MODE setting.

DEC
Syntax: DEC var
Action: Reduces the value of 'var' by 1

DEFAULT See SELECT

DEFBIT
DEFBYT
DEFWRD
DEFFLT
DEFSTR
 The instruction DEFxxx sets the varaible type to that
 specified.

Example: DEFBIT "a-z" defines all variables as boolean.

DEFFILL
Syntax: DEFFILL [col],[style],[pattern] or DEFFILLL [col],A$
Action: Sets fill colour and pattern, or allows user-defined
 patterns.
 'style' - 0=empty, 1=filled, 2=dots, 3=lines, 4=user
 24 dotted patterns and 12 lined can by chosen.
 A user-defined fill pattern is defined in the second
 variation - DEFFILL col,A$ by defining a 16 x 16 bit
 pattern array.

DEFFN
Syntax: DEFFN func [(x1,x2,..)]=expression
Action: Allows the definition of single line functions. The term
 'expression' can be any numeric or string expression.

Example: DEFFN test(y,a$)=x-y+LEN(a$)
 x=2
 PRINT @test(4,"abcdef")
 See also FN

DEFLINE

Syntax: DEFLINE [style],[thickness],[begin_s,end_s]
Action: Sets line style, width & type of line start and end.
 'style' determines the style of line:
 1 Solid line
 2 Long dashed line
 3 Dotted
 4 Dot-dashed
 5 Dashed
 6 Dash dot dot ..
 7 User defined
 'thickness' sets width in pixels (odd numbers only).
 The start and end symbols are defined by the last
 parameter, and can be:
 0 Square
 1 Arrow
 2 Round

DEFLIST
Syntax: DEFLIST x
Action: Defines the program listing format.
 x Command Variable
 0 PRINT abc
 1 Print Abc
 2 PRINT abc#
 3 Print Abc#

DEFMARK
Syntax: DEFMARK [C],[A],[G]
Action: Sets colour,type and size of the corner points to be
 mark using the command polymark
 'C' is the colour register number
 'A' defines the type of mark. the following types
 are possible :-
 1=dot
 2=plus sign
 3=asterisk
 4=square
 5=cross
 6=hash
 all other values return the asterisk symbol
 'G' sets the size of mark

DEFMOUSE
Syntax: DEFMOUSE n or DEFMOUSE a$
Action: Chooses a pre-defined mouse form or defines a new one
 the following mouse forms are available :-

 0=arrow 1=expanded (rounded) X
 2=bee 3=pointing hand
 4=open hand 5=thin crosswire
 6=thick crosswire 7=bordered crosswire

 A mouse can be defined by the command defmouse a$
 16*16 dots are available to create a shape. Also
 a 'mask' must be defined so that the cursor remains
 visible when it is the same colour as the background
 one of the 256 dots must be defined as the starting
 point to which the mouse functions will relate.

Example:
 DEFMOUSE 2

 PAUSE 1
 m$=MKI$(0)+MKI$(0)+MKI$(1)+MKI$(0)+MKI$(1)
 FOR i%=1 TO 16
 m$=m$+MKI$(65535)
 NEXT I%
 FOR i%=1 TO 16
 m$=m$+MKI$(1)
 NEXT i%
 PBOX 200,150,400,250
 DEFMOUSE m$
 REPEAT
 UNTIL MOUSEK
DEFNUM
Syntax: DEFNUM n
Action: Affects output of numbers by the PRINT command and its
 variants. All numbers are outputted to occupy n character
 positions, not counting the decimal point.

DEFTEXT
Syntax: DEFTEXT [colour],[attr],[angle],[height],[fontnr]
Action: Defines the colour,style,rotation and size of text
 to be printed using the text command.

 'colour' colour register number (0-15).
 'attr' text style - 0=normal 1=bold 2=light 4=italic
 8=underlined 16=outlined (can be combined).
 'angle'= rotation only the following are possible :-
 0 deg (0), 90 deg (900), 180 deg (1800), 270 deg (2700)
 'height' size of text - 4=icon, 6=8*8, 13=std, 32=enlarged.
 'fontnr' - the number of a desired character set. This font
 must have been previously installed (See also GDOS,
 VST_LOAD_FONT, VQT_NAME).

Example:
 FOR i%|=0 TO 5
 DEFTEXT 1,2^i|,0,13
 TEXT 100,i|*16+100,"This is text attribute "+STR$(i|)
 NEXT i|

DEG(x) Converts x from radians to degrees. See also RAD.

DELAY x Suspends program operation for x seconds (with a
 theroetical resolution in milliseconds). See aslo PAUSE.

DELETE
Syntax: DELETE x(i)
Action: Removes the ith element of array x. All elements with a
 larger index are shifted down one position. See also
 INSERT.

DFREE
Syntax: DFREE(n)
Action: Locates free space on a disc 'n' = drive number (0-15)

DIM
Syntax: DIM var(indices)[,var(indices),.....]
Action: Sets the dimensions of an array or string array.

DIM?
Syntax: DIM?(field())

Action: Determines the number of elements in an array.
 Note - arrays have an element '0'.

DIR
Syntax: DIR "filespec" [TO "file"]
Action: Lists the files on a disc. The output can be directed to a
 file or other device.

Example: "LST:" See also FILES.

DIR$
Syntax: DIR$(n)
Action: Names the active directory for drive 'n'
 'n' is drive number (1=A:, 2=B: ...).

DIV
Syntax: DIV var,n
Action: Divides the value of var by n. As var=var/n but 30% faster.

DIV()
Syntax: a%=DIV(x,y)
Action: See DIV above.

DMACONTROL
Syntax: DMACONTROL ctrlvar
Action: Controls the DMA sound on the STE.
 cntrlvar = 0 - stop sound
 1 - Play sound once
 2 - Play sound in a loop

DMASOUND
Syntax: DMASOUND beg,end,rate[,ctrl]
Action: Output of DMA sampled sound on the STE.
 beg - Sample start address.
 end - Sample end address.
 rate - Sample rate 0=6.25 kHz, 1=12.5 kHz, 2=25 kHz,
 3=50kHz.
 ctrl - See DMACONTROL above.

Example: 'Try each of the DMASOUND lines below.
 n%=360*32
 DIM a|(n%)
 'DMASOUND V:a|(0),V:a|(n%),0
 'DMASOUND V:a|(0),V:a|(n%),1
 'DMASOUND V:a|(0),V:a|(n%),2
 DMASOUND V:a|(0),V:a|(n%),3,3
 FOR i%=0 TO n%
 a|(i%)=128+SINQ(i%*i%/7200)*127
 NEXT i%
 REPEAT
 UNTIL MOUSEK
 DMACONTROL 0

DO....LOOP
Syntax: DO
 (instructions)
 LOOP
Action: Creates an endless loop, exit only with EXIT IF or GOTO.

DO UNTIL condition

DO WHILE condition

 The commands DO and LOOP can be extended using UNTIL and
 WHILE. The loop DO WHILE causes a loop as long as the
 condition is true. See also LOOP WHILE, LOOP UNTIL.

DOUBLE{x} Reads/writes an 8-byte floating point variable in IEEE
 double precision format. (See also BYTE{}, CARD{}, INT{},
 LONG{}, {}, FLOAT{}, SINGLE{}, CHAR{})

DOWNTO Used within a FOR..NEXT loop as a counter. Instead of using
 step -1, the command DOWNTO is used, however STEP is not
 possible with DOWNTO. eg:
 FOR c=100 DOWNTO 1
 is the same as FOR c=100 TO 1 STEP -1

DPEEK(x) Reads 2 bytes from address x (a word). Works in supervisor
 mode.

DPOKE x,y Writes y as a 2 byte word to address x. To work in
 supervisor mode use SDPOKE ..

DRAW
Syntax: DRAW [TO] [x,y]
 DRAW [x1,y1][TO x2,y2][TO x3,y3][TO..]
Action: Draws points and connects two or more points with
 straight lines. DRAW x,y is the same as PLOT x,y.
 DRAW TO x,y connects the point to the last set
 point (set by PLOT, LINE or DRAW).

DRAW expression
DRAW(i)
SETDRAW
 These instructions give a turtle like approach to drawing.
 An imaginary pen is moved over the screen and draws
 relative to the last point. The 'expression' is a LOGO type
 of convention controlled by graphic commands. The pen
 leaving a trail over the 'paper' leaves a graphic image.
 The statement below is an wxample of how these commands can
 be used.

Example: DRAW "PU FD 40 PD FD 40"

 The available commands are:

FD n ForwarD Moves the 'pen' n pixels forward

BK n BacKward Moves the 'pen' n pixels backwards

SX x Scale x Scales the 'pen' movement for FD and BK

SY y Scale y by the specified factor. Use SX0 or SY0
 to turn off scaling.

LT a Left turn Turns the 'pen' left through the
 specified angle a, given in degrees.

RT a Right turn As LT but turns right.

TT a Turn To Turns the 'pen' to the absolute angle
 'a' in degrees. (see below)

 0
 |
 |
 270 -- zero point -- 90
 |
 |
 180

MA x,y Move Absolute Moves the 'pen' to the absolute
 coordinates x,y

DA x,y Draw Absolute Moves the 'pen' to the absolute
 coordinates x,y and draws a line in the
 current colour from the last position to
 the point x,y

MR xr,yr Move Relative Moves the 'pen' position in the x and y
 directions relative to the last
 position.

DR xr,yr Draw Relative Moves the 'pen' by the specified
 displacement relative to its last
 position and draws a line in the current
 colour from the last position to this
 point.

The command SETDRAW x,y,w is an abbreviation for the expression
DRAW "MA",x,y,"TT",w.

CO c Colour Sets 'c' as the character colour (see
 parameters for COLOR command).

PU Pen Up Lifts the 'pen' from the 'paper'.

PD Pen Down Lowers the 'pen' onto the 'paper'.

Additionally the following interrogation functions are available:

DRAW(0) returns the x position.
DRAW(1) returns the y position.
DRAW(2) returns angle in degrees.
DRAW(3) returns the X axis scale factor.
DRAW(4) returns the Y axis scale factor.
DRAW(5) returns the pen flag (-1=PD, 0=PU).

All these functions return floating point values.

Example:

 DRAW "ma 160,200 tt 0"
 FOR i&=3 TO 10
 polygon(i&,90)
 NEXT i&

 PROCEDURE polygon(n&,r&)
 LOCAL i&
 FOR i&=1 TO n&
 DRAW "fd",r&," rt ",360/n&

 NEXT i&
 RETURN

EDIT
Syntax: EDIT
Action: Returns to the editor.
 When used in direct mode the command allows a return
 to the editor. In a program, is the same as END but
 without the program end alert box.

ELLIPSE
Syntax: ELLIPSE x,y,rx,ry [,phi0,phi1]
Action: Draws an ellipse at x,y, having 'rx' as length of the
 horizontal axis and 'ry' as length of the vertical axis
 The optional angles 'phi0' & 'phi1' give start and end
 angles in tenths of a degree, to create an elliptical arc.

ELSE See command IF.
ELSE IF " " "

END
Syntax: END
Action: Closes all files and terminates program execution.

ENDFUNC See command FN.

ENDIF See command IF.

ENDSELECT See command SELECT.

EOF
Syntax: EOF (#n)
Action: Determines whether the file pointer for the file with
 channel number 'n' is at End Of the File. Returns -1 if it
 is, otherwise 0.

EQV
Syntax: x EQV y
Action: The operator EQV (equivalence) produces a TRUE result only
 if the arguments of both are either TRUE or both FALSE.
 (same as NOT(x XOR y)).

EQV(x,y)
Syntax: EQV(x,y)
Action: Sets a bit of the result if the appropraite bits in x and y
 are both set, or both reset. eg:
 PRINT BIN$(EQV(15,6),4) prints 0110

ERASE
Syntax: ERASE field()
Action: Deletes an array and releases the dimensioned area.

ERR
Syntax: ERR
Action: Returns the error code of any error that has occurred.

ERR$
Syntax: ERR$(x)
Action: Returns, as a string, the GFA Basic error mesage x.

ERROR
Syntax: ERROR n
Action: Simulates the occurrence of the error with the error
 code 'n' and the appropriate error message is then
 displayed.

EVEN
Syntax: EVEN n
Action: Determines if a number is even. Returns TRUE (-1) and
 FALSE(0). Also see ODD

EVERY
EVERY CONT
EVERY STOP

Syntax: EVERY ticks GOSUB proc
Action: The command EVERY causes the procedure 'proc' to be called
 every 'ticks' clock units. The clock unit is defined as one
 two-hundredth of a second. But a branch can only be done
 every fourth clock unit, resulting in an effective time
 resolution of one fiftieth of a second.
 Using EVERY STOP, the calling of a procedure can be
 prevented. With EVERY CONT this is again allowed. See also
 AFTER.

EVNT_BUTTON
Syntax: EVNT_BUTTON(clicks,mask,state[,mx,my,button,k_state])
Action: Waits for one or more mouse clicks, and returns the number
 of clicks.
 INPUTS
 clicks - Maximum allowable clicks.
 mask - Mask for the desired mouse key:
 Bit 0 = 1 : Left Button
 Bit 1 = 1 : Right Button
 state - Desired status, in order to terminate the event.
 Bit allocation as for mask.
 RETURNED VALUES:
 mx - x coordinate of mouse pointer on event termination
 my - y coordinate of mouse pointer on event termination
 button - state of mouse button, bit allocation as for mask.

 k_state- Condition of keyboard shift keys:
 Bit 0 = Right shift key
 Bit 1 = Left shift key
 Bit 2 = Control key
 Bit 3 = Alternate key

EVNT_DCLICK
Syntax: EVNT_DCLICK(new,get_set)
Action: Sets the speed for double-clicks of a mouse button.
 Returns the speed.
 new - new speed (0-4)
 get_set - determine whether to set or read. 0=read,1=set.

EVNT_KEYBD
Syntax: EVNT_KEYBD()
Action: Waits for a key to be pressed and returns a word-sized
 value. The low order byte contains the ASCII code, the high
 byte contains the keyboard scan code.

EVNT_MESAG
Syntax: EVNT_MESAG(adr_buffer)
Action: Waits for the arrival of a message in the event buffer. The
 returned value is always 1.
 adr_buffer is the address of a 16 byte buffer for the
 message. If 0 is used, then the sytem message buffer is
 used, ie. MENU(1) to MENU(8).

EVNT_MOUSE
Syntax: EVNT_MOUSE(flag,mx,my,mw,mh,mcur_x,mcur_y,button,k_state)
Action: Waits for the mouse pointer to be located inside (or
 optionally, outside) a specified rectangular area of the
 screen.
 The returned value is always 1.
 INPUTS:
 flag - Presence inside(0) or outside(1) the desired area.
 mx,my - Coordinates of top left corner of recatngle.
 mw - Width of rectangle.
 mh - Height of rectangle.
 OUTPUTS:
 mcur_x x coordinate of mouse when event occurs.
 mcur_y y coordinate of mouse when event occurs.
 button same as for mask in EVNT_BUTTON.
 k_state same as for k_state in EVNT_BUTTON.

EVNT_MULTI
HOW: EVNT_MULTI(flag,clicks,mask,state,m1_flags,m1_x,
 m1_y,m1_w,m1_h,m2_flags,m2_x,m2_y,m2_w,m2_h,adr_buffer,
 count[,mcur_x,mcur_y,button,k_state,key,num_clicks])
Action: Waits for the occurence of selected events. Returns the
 event which actually occured, with bit allocation as for
 'flag' below:
 INPUT:
 flag Sets the event(s) to be waited for as follows:
 BIT 0 keyboard MU_KEYBD
 BIT 1 mouse button MU_BUTTON
 BIT 2 first mouse event MU_M1
 BIT 3 second mouse event MU_M2
 BIT 4 report event MU_MESAG
 BIT 5 timer MU_TIMER
 OUTPUT:
 num_clicks: number of expected mouse clicks

 The parameters are already described for EVNT_MESAG, etc..
 With ON MENU, which uses this routine internally, the
 parameters are installed for the instruction ON MENU xxx
 GOSUB.
 MENU(1) to MENU(8) Message buffer.
 MENU(9) Returned value.
 MENU(10)=mcur_x x mouse position.
 MENU(11)=mcur_y y mouse pos.
 MENU(12)=button Mouse state button.

 MENU(13)=k_state Shift key status.
 MENU(14)=key ASCII and scan code.
 MENU(15)=num_clicks Number of mouse clicks.

EVNT_TIMER
Syntax: EVNT_TIMER(count)
Action: The function waits for a period of time expressed in
 'count' millisecondes.
 The returned value is always 1.

EXEC
Syntax: EXEC flg,name,cmd,env
 EXEC (flg,name,cmd,env)
Action: Loads and executes machine code programs or compiled
 programs from disc.
 flg=0 - load and go.
 flg=3 - load only.
 'name' - the name of the program.
 'cmd' - command line (see BASEPAGE).
 'env' - environment string (usually just "").
 The named program is loaded from disc, the absolute
 addresses are relocated, a basepage is created, and if
 required the program run.

EXIST
Syntax: EXIST ("filespec")
Action: Determines whether a particular file is present on
 a disc. If present -1 is returned, else 0 is returned.

EXIT
Syntax: EXIT IF Condition
Action: Enables the exit from a loop.
 If the EXIT command is met within a loop and the exit
 condition is met, the program continues from the first
 command after the loop.
 This command allows any loop to be left ie: FOR...NEXT
 DO...LOOP, REPEAT...UNTIL AND WHILE...WEND.

EXP
Syntax: EXP(X)
Action: Calculates the value of an exponent x.

FACT
Syntax: x=FACT(n)
Action: Calculates the factorial (n!) of n and returns the result
 in x. (0!=1).

FALSE
Syntax: FALSE
Action: Constant 0. This is simply another way of expressing
 the value of a condition when it is false and is equal
 to zero (see also TRUE).

FATAL

Syntax: FATAL
Action: Returns the value 0 or -1 according to the type of
 error.
 On normal errors the function returns 0. The value -1
 is returned on all errors where the address of the
 last executed command is no longer known.
 Normally this is an operating system error which
 would lead to the 'bomb' errors and the breakdown of
 the program.

FGETDTA
Syntax: n%=FGETDTA()
Action: Returns the DTA (Disk Transfer Address).

FIELD
Syntax: FIELD #n,num AS svar$ [,num AS svar$,...]
 FIELD #n,num AT(x)[,num AT(x),...]
Action: Divides records into fields.
 'n' is the channel number of a file previously OPENed.
 The integer expression 'num' determines the field length.
 'Svar' is a string variable containing data for one field
 of a data record.
 The section 'num AS svar$' can be repeated if the
 record is to be divided into several fields. The sum of
 the fields should equal the record length.
 By using AT() instead of AS, numeric variables can be read
 and written. 'num' contains the length of the varaible
 type. The brackets contain a pointer to the variable.
 eg:
 FIELD #2,4 AS a$,2 AT(*b&),8 AT(*c#),6 AS d$

FILES
Syntax: FILES p$ [TO name$]
Action: Lists the files on a disk.
 Like DIR but more detailed data listing.

FILESELECT
Syntax: FILESELECT [#title$],path$,default$,name$
Action: Creates a fileselect box on the screen.
 Title$ can be a string of max 30 characters. Allows a
 header to be placed in the fileselect box (TOS 1.4 and
 above).
 path$ is the drive and path - if none specified then the
 default drive is assumed.
 default$ contains the name of the file to apppear in the
 selection line. ("" for no default).
 name$ contains the selected file, either an empty string if
 CANCEL is selected, or the file name selected.
 See also FSEL_INPUT

Example:
 FILESELECT #"LOAD File","A:*.PRG","GFABASIC.PRG",name$

FILL
Syntax: FILL x,y

Action: Fills a bordered area with a pattern commencing at
 the co-ordinates 'x,y'.
 Fill pattern can be chosen with the command DEFFILL.

FIX
Syntax: FIX(x)
Action: Returns the integer of 'x' after it has been rounded.
 Same as INT(x) for positive numbers but for negative
 numbers INT(-1.99)=-2 AND FIX(-1.99)=1.
 FIX is identical to the function TRUNC and complements
 FRAC.

FLOAT{x} Reads/writes an 8-byte variable in Basic v3 floating point
 format. (See also BYTE{}, CARD{}, INT{},LONG{}, {},
 SINGLE{}, DOUBLE{}, CHAR{})

FN
Syntax: FN func[(y1,y2...)]
Action: Call to a defined DEFFN function or a FUNCTION. (you can
 also use @). See also DEFFN, FUNCTION.

FOR...NEXT
Syntax: FOR c=b TO e [STEP s]
 instructions
 NEXT c
Action: Creates a loop which is executed as many times as specified
 at the beginning of the loop.

FORM INPUT
Syntax: FORM INPUT n,a$
Action: Enables the insertion of a character string (limited
 to 255 characters in length) during program execution.
 'n' = the maximum length of the character string.
 a$ is the name of the string variable.

FORM INPUT AS
Syntax: FORM INPUT n AS a$
Action: Similar to FORM INPUT, except the current value of a$ is
 displayed, and can be edited.

*** the following 7 commands are part of the AES FORM Library
commands, and are similar to C bindings for calling these AES
functions ***

FORM_ALERT
Syntax: a%=FORM_ALERT(button,string$)
Action: Creates an alert box.
 button = number of the default button (0-3).
 string$ = string defining the message in the alert. (in C
 format) - note that the square brackets are part of the
 string:
 [i][Message][Buttons]
 where i = the required alert symbol - see ALERT.
 Message is a string max 30 characters.
 Buttons = the name of the 3 buttons.
 A good use of this command is in trapping errors:

Example: ~FORM_ALERT(1,ERR$(ERR))

FORM_BUTTON
Syntax: FORM_BUTTON(tree,obj,clicks,new_obj)
Action: Make inputs in a form possible using the mouse.
 INPUTS:
 tree - address of the object tree
 obj - current object number
 clicks - max expected number of mouse clicks
 OUTPUT:
 new_obj- next object to be edited.
 Returns 0 if the FORM was exited, otherwise >0.

FORM_CENTER
Syntax: FORM_CENTER(tree,fx,fy,fw,fh)
Action: Centers the tree, and returns its coordinates.
 INPUT: tree - address of the object tree.
 OUTPUTS:
 fx,fy coordinates of top left corner
 fw,fh form width and height.
 returns a reserved value (always 1).

FORM_DIAL
HOW: FORM_DIAL(flag,mi_x,mi_y,mi_w,mi_h,ma_x,ma_y,ma_w,ma_h)
Action: Release (or reserve) a rectangular screen area and draw an
 expanding/shrinking rectangle.
 Returns 0 if an error occured.
 flag function
 0 FMD_START reserve a display area.
 1 FMD_GROW draw expanding box.
 2 FMD_SHRINK draw shrinking box.
 3 FMD_FINISH release reserved display area.
 mi_x,mi_y top left corner of rectangle at min size
 mi_w,mi_h width & height " " " " "
 ma_x,ma_y top left corner of rectangle at max size
 ma_w,ma_h width & height " " " " "

FORM_DO
Syntax: FORM_DO(tree,start_obj)
Action: Pass management of FORM over to the AES until an object
 with EXIT or TOUCH EXIT status is clicked on.
 Returns the number of the object whose clicking or double
 clicking caused the function to end. If it was a double
 click, bit 15 will be set.
 tree = address of the object tree.
 start_obj = Number of the first editable field (if there is
 one).

FORM_ERROR
Syntax: FORM_ERROR(err)
Action: Displays the ALERT associated with the error numbered err.

Example: PRINT FORM_ERROR(10)

FORM_KEYBD
Syntax: FORM_KEYBD(tree,obj,next_obj,char,new_obj,next_char)
Action: Allows a form to be edited via the keyboard.

 Returns 0 if the FORM was exited, otherwise >0.
 tree address of the object tree
 obj number of the object to be edited
 next_obj number of the next EDITable object in the tree
 char input character
 new_obj object to be EDITed on the next call
 returns next_char - next character (derived from keyboard)

 This function is a subroutine of FORM_DO.

FRAC
Syntax: FRAC(x)
Action: Returns the digits after the decimal point in a number.
 'x' can be any numeric expression. if 'X' is an integer
 then a zero is returned, therefore FRAC(x)=x-TRUNC(x)

FRE
Syntax: f%=FRE(X) or f%=FRE()
Action: Returns the amount of memory free (in bytes).
 The parameter 'x' is disregarded, but if present a 'Garbage
 Collection' is carried out. (non current strings are freed
 from memory).

FSEL_INPUT
Syntax: n%=FSEL_INPUT(path$,name$,[button])
Action: Calls the AES fileselect library, to provide a
 fileselector.
 The optional parameter 'button':
 Returns a 1 or 0 depending whether 'OK' or 'Cancel' was
 clicked on.
 ON ENTRY:
 path$ = initial directory path
 name$ = Default name
 ON EXIT:
 path$ = final directory path
 name$ = chosen filename.
 button = 1 if 'OK'
 = 0 if 'Cancel'

FSETDTA
Syntax: ~FSETDTA(addr)
Action: Sets the address of the DTA. (See also FGETDTA).

FSFIRST
Syntax: FSFIRST(p$,attr)
Action: Searches for the first file on a disk to fulfill the
 criteria specified in p$ (eg: "C:*.GFA"). If found, the
 filename and attributes are to be found in the DTA.
 The parameter 'attr' is the file atributes to search on.

FSNEXT
Syntax: FSNEXT()
Action: Search for the next file which fulfills the conditions of
 FSFIRST.

Example:
 ~FSETDTA(BASEPAGE+128)

 e%=FSFIRST("*.GFA",-1) ! all bits set
 DO UNTIL e%
 IF BYTE{BASEPAGE+149} AND 16 !if its a folder
 PRINT "*";CHAR{BASEPAGE+158} ! indicate by a star
 ELSE ! otherwise
 PRINT 'CHAR{BASEPAGE+158} ! a space before
 ' ! the filename
 ENDIF
 e%=FSNEXT() ! continue search
 LOOP

FULLW
Syntax: FULLW [#]n
Action: Enlarges window 'n' to full screen size.
 'n' is the window number. If the window has not
 yet been opened, this takes place automatically.

FUNCTION
 The commands FUNCTION and ENDFUNC form a subroutine, in a
 similar manner to PROCEDURE. The name of the subroutine
 and, optionally, the list of varaibles are given after
 FUNCTION command. Calling the subroutine is done by the use
 of @ or FN and the function name followed by a list of
 parameters if necessary.
 If the command RETURN is met during program execution, the
 the value given after it or the value of the named variable
 is returned. In a function, RETURN can be used several
 times, with IF or the like. A function cannot be terminated
 without a RETURN command being before the ENDFUNC command.
 In a function name ending with the $ character the function
 returns a string result.
Example:
 f1%=@fac_loop(15)
 PRINT "loop: fac(15) = ";f1%
 '
 FUNCTION fac_loop(f%)
 w=1
 FOR J%=1 TO f%
 MUL w,j%
 NEXT j%
 RETURN w
 ENDFUNC

GB Address of the AES Parameter Block
 This (unlike the other AES address blocks) cannot be used
 with index.

GCONTRL Address of the AES control block. With index (GCONTRL(2))
 the elements can be accessed directly.

GDOS? Returns TRUE (-1) if GDOS is resident and FALSE (0)
 otherwise.

GEMDOS
Syntax: GEMDOS(n[,x,y])
Action: To call the GEMDOS routines. The optional parameter list

 can be prefixed with W: or L: to denote word or longword
 parameters. (if non given, default is W:)

Example:
 DO UNTIL GEMDOS(17)
 ALERT 1,"Printer not ready",1,"retry|break",d%
 LOOP UNTIL d%=2

GEMSYS
Syntax: GEMSYS n
Action: Calls the AES routine 'n'. The parameters necessary for the
 operation of the routine must first be placed in the
 appropriate AES parameter blocks.

GET
Syntax: GET x1,y1,x2,y2,sections$
Action: GET puts a section of the screen into a string variable
 'section$' (x1,y1 and x2,y2 are coordinates of diagonally
 opposite corners). See also PUT.

GET #
Syntax: GET #n[,r]
Action: Reads a record from a random access file.
 'n' is the channel number (1 to 99)
 'r' is number of the record to be read (1 to 65535)
 If 'r' is not given then the next record in the file
 will be read. (See also PUT #).

GETSIZE
Syntax: bytes%=GETSIZE(x1,y1,x2,y2)
Action: The TT does not have a constant screen memory of 32000
 Bytes like the ST. A screen could require much more memory
 (153600 Bytes). The commands GET and PUT are limited to
 32000 Bytes and therefore a function has been introduced
 to support the larger screen resolutions that require more
 than 32000 Bytes.
 This function will return the number of Bytes required by
 the screen between the coordinates x1,y1,x2,y2. Several
 GET or PUT commands could be used to address the entire
 screen.

GINTIN Address of the AES Integer input block. (Can be used with
 index GINTIN(0)).

GINTOUT Address of the AES Integer output block. (Can be used with
 index GINTOUT(0)).

GOSUB
Syntax: GOSUB name [(LIST OF EXPRESSIONS)]
Action: Branches to the procedure called 'name'.
 A procedure name can begin with a digit and contain
 letters, numbers, dots and the underline dash.
 '(list of expressions)' contains the values of any
 local variables to be passed to the procedure.
 When the interpreter comes across a GOSUB command,

 it branches to the procedure named in the gosub.
 It is possible to call further procedures whilst in
 a procedure. It is even possible to call the procedure
 one is in at the time (recursive call).

GOTO
Syntax: GOTO label
Action: allows an unconditional jump to a label.
 'label' must end in a colon and can consist of letters,
 numbers, dots, dashes and can begin with a digit.

*** The following 10 functions form the Graphics library calls to the
AES.

GRAF_DRAGBOX
Syntax: GRAF_DRAGBOX(iw,ih,ix,iy,rx,,ry,rw,rh[,last_ix,last_iy])
Action: Allows a rectangle to be moved about the screen with the
 mouse. Its movement is restricted to the interior of a
 larger specified rectangle. This function should only be
 called when the left mouse button is held down, as it
 terminates when the button is released.
 Returns 0 if an error occurs.
 INPUTS:
 iw,ih width & height of the moving rectangle
 ix,iy initial coords of top left corner of moving
 rectangle
 rx,ry coords of top left corner of limiting rectangle
 rw,rh width & height of limiting rectangle
 OUTPUTS:
 last_ix coords of top left corner of inside rectangle
 last_iy when the function terminated.

GRAF_GROWBOX
Syntax: GRAF_GROWBOX(sx,sy,sw,sh,dx,dy,dw,dh)
Action: Draws an expanding rectangle.
 Returns 0 if error occurs.
 sx,sy Initial coords of top left corner of rectangle
 sw,sh Initial width & height of rectangle
 dx,dy Final coords of top left corner
 dw,dh Final width & height

GRAF_HANDLE
Syntax: GRAF_HANDLE(char_w,char_h,box_w,box_h)
Action: Returns the ID number of the current VDI workstation and
 supplies the size of a character from the system set.
 OUTPUTS:
 char_w width in pixels of a character
 char_h height
 box_w width of a character cell
 box_h height

GRAF_MKSTATE
Syntax: GRAF_MKSTATE(mx,my,m_state,k_state)
Action: This function supplies the current mouse coordinates and
 status of tht mouse buttons and shift keys.
 Returns a reserved value (always 1)
 OUTPUTS:
 mx,my mouse coordinates

 m_state mouse button status
 bit 0 left button
 bit 1 right button
 k_state see k_state in function EVNT_BUTTON

GRAF_MOUSE
Syntax: GRAF_MOUSE(m_form,pattern_adr)
Action: This function allows the mouse shape to be changed.
 (similar command to DEFMOUSE)
 Returns 0 if an error occurs.
 m_form number of the mouse pointer shape
 0 = Arrow
 1 = Double curly brackets
 2 = Busy bee
 3 = Pointing finger
 4 = Open hand
 5 = Thin cross hairs
 6 = Thick cross hairs
 7 = Outlined cross hairs
 255 = User defined
 256 = Hide mouse
 257 = Show mouse

 pattern_adr = address of bit information defining the mouse
 pointer. 37 word-sized values as follows:
 1 = x coordinate of the action point
 2 = y " " " " "
 3 = number of colour levels, always 1
 4 = mask colour, always 0
 5 = pointer colour, always 1
 6 to 21 = Mask definition (16 words ie.16x16 bits)
 22 to 37 = Pointer def "

GRAF_MOVEBOX
Syntax: GRAF_MOVEBOX(w,h,sx,sy,dx,dy)
Action: Draws a moving rectangle with constant width & height.
 Returns 0 on error.
 INPUTS:
 w,h width & height of rectangle
 sx,sy Initial coords of top left corner of rectangle
 dx,dy Final coords of top left corner

GRAF_RUBBERBOX
Syntax: GRAF_RUBBERBOX(tx,ty,min_w,min_h[,last_w,last_h])
Action: This function draws an outline of a rectangle while the the
 left mouse button is held down. The top left corner is
 fixed, but the width & height of the rectangle change with
 the position of the mouse. This function should only be
 called when the left mouse button is held down, as it
 terminates when the button is released.
 Returns 0 if an error occurs.
 INPUTS:
 tx,ty coords of top left corner
 min_w,min_h minimum width & height of rectangle
 OUTPUTS:
 last_w width of rectangle when function terminates
 last_h height " " " " "

GRAF_SHRINKBOX
Syntax: GRAF_SHRINKBOX(sx,sy,sw,sh,dx,dy,dw,dh)
Action: Draws an shrinking rectangle.
 Returns 0 if error occurs.
 sx,sy Final coords of top left corner
 sw,sh Final width & height
 dx,dy Initial coords of top left corner of rectangle
 dw,dh Initial width & height of rectangle

GRAF_SLIDEBOX
Syntax: GRAF_SLIDEBOX(tree,parent_obj,slider_obj,flag)
Action: This function (really belongs to the OBJECT library) moves
 one rectangular object within another, in a similar manner
 to GRAF_DRAGBOX. The object can only be moved vertically or
 horizontally, and must be a 'child' of the limiting object.
 This function should only be called when the left mouse
 button is held down, as it terminates when the button is
 released. Commonly used in movement of slider bars in
 windows.
 Returns the position of the moving rectangle relative to
 the limiting one:
 Horizontally: 0 = far left 1000 = far right
 Vertically: 0 = top 1000 = bottom
 INPUTS:
 tree address of oobject tree
 parent_obj object number of the 'limiting rectangle'
 slider_obj " " " " moving rectangle
 flag direction (0=horizontal, 1=vertical)

GRAF_WATCHBOX
Syntax: GRAF_WATCHBOX(tree,obj,in_state,out_state)
Action: This function (really belongs to the OBJECT library)
 monitors an object tree while a mouse button is pressed,
 checking whether the mouse pointer is inside or outside.
 When the mouse button is released, the status of the object
 takes one of two specified values (normal selected/normal),
 depending on whether the pointer was inside the object or
 outside.
 Returns 1 if the mouse pointer was inside the object when
 the button was released, or 0 if it was outside.
 INPUTS:
 tree address of the tree
 obj number of the object to be monitored
 in_state Status (OB_STATE) to be given to the object if
 the mouse pointer is found within it.
 out_state Status (OB_STATE) to be given to the object if
 the mouse pointer is found outside it.

GRAPHMODE
Syntax: GRAPHMODE n
Action: Sets the graphic mode 1 to 4.
 1=replace 2=transparent
 3=xor 4=reverse transparent

HARDCOPY
Syntax: HARDCOPY

Action: Prints the screen (same as pressing <ALT> & <HELP>).

HEX$
Syntax: HEX$(x[,y])
Action: Changes the value of 'x' into a string expression
 which contains the value of 'x' in hexadecimal form.
 The optional parameter y specifies the number of character
 positions (1 to 8) to be used.

HIDEM
Syntax: HIDEM
Action: Switches off the mouse pointer. (see also SHOWM).

HIMEM
Syntax: HIMEM
Action: Returns the address of the area of memory which is not
 required by GFA Basic. Normally 16384 bytes below the
 screen.

HLINE
Syntax: HLINE x1,y,x2,f,m,addr,num_pattern
Action: Similar to ALINE, but only horizontal lines can be drawn.
 x1 and x2 contain the x coordinates of the line start and
 end points and y the common y coordinate. f is the colour
 (0-15). m is the graphic mode. addr is the address of a
 block of memory which contains bit information for several
 line styles each of 16 bits. Which style is used for a
 given line depends on both the y coordinate and the
 parameter num_pattern. They are ANDed together and the
 resulting number used as an index to the style table.

HTAB Positions the cursor to the specified column. (Counting
 from 0). See also VTAB

IF
Syntax: IF condition [THEN]
 program block
 ELSE
 program block
 ENDIF
Action: Divides a program up into different blocks depending
 on how it relates to the 'condition'.

ELSE IF condition
 Enables nested IF's to be more clearly expressed in a
 program.

Example: 'the following code has no ELSE IF's
 DO
 t$=CHR$(INP(2))
 IF t$="l"
 PRINT "Load text"
 ELSE
 IF t$="s"
 PRINT "Save text"
 ELSE

 IF t$="e"
 PRINT "Enter text"
 ELSE
 PRINT "unknown command"
 ENDIF
 ENDIF
 ENDIF
 LOOP

 The use of ELSE IF produces shorter code:

 DO
 t$=CHR$(INP(2))
 IF t$="l"
 PRINT "Load text"
 ELSE IF t$="s"
 PRINT "Save text"
 ELSE IF t$="e"
 PRINT "Enter text"
 ELSE
 PRINT "unknown command"
 ENDIF
 LOOP

IMP
Syntax: x IMP y
Action: The operator IMP (implication) corresponds to a logical
 consequence. The result is only FALSE if a FALSE
 expression follows a TRUE one. The sequence of the argument
 is important.

IMP()
Syntax: IMP(x,y)
Action: This function resets a bit if the appropriate bit in x is
 set and y is reset, otherwise the bit is set.

INC
Syntax: INC var
Action: Increases the value of 'var' by 1. the same as
 var=var+1 but executes aprox 3.5 times faster

INFOW
Syntax: INFOW n,"string$"
Action: Allocates the (NEW) information line to the window with the
 number 'n'.If the string is empty then the line is removed
 altogether. As the info line cannot be switched off and on
 when the window is opened, infow has to be used in
 front of OPENW when an information line is required.
 If the command INFOW,n,"" is used ("" = null string)
 before OPENW then the window will have no info line.

INKEY$
Syntax: INKEY$
Action: Reads a character from the keyboard.
 This function returns a string which is 2, 1 or 0
 characters long.

 Normal keys, return the ASCII code.
 Function keys, HELP, UNDO etc. return two characters:
 The ASCII code zero and then the key code.

Example:
 DO
 t$=INKEY$
 IF t$<>""
 IF LEN(t$)=1
 PRINT "Character: ";t$,"ASCII code:";ASC(t$)
 ELSE
 PRINT "CHR$(0)+Scan code ";CVI(t$)
 ENDIF
 ENDIF
 LOOP

INLINE
Syntax: INLINE var,length
Action: Reserves an area of memory within a program.
 var is any integer variable
 length is how much memory to reserve, less than 32700 bytes
 The reserved area always starts at an even address and is
 initially filled with zeros. When implementing INLINE this
 address is written to the integer variable adr. When the
 program is loaded or saved, the reserved area is also.

 Placing the cursor on the line containing the command
 INLINE and pressing the HELP key causes a new menu to
 appear with the entries: LOAD SAVE DUMP CLEAR. Load is used
 to load a machine code program or data into the reserved
 area, save saves the reserved area to disk (default
 filename extension .INL). DUMP printsout the reserved area
 in hex to the printer and CLEAR clears the araea of memory.

INP INP&(#) INP%(#)
OUT OUT& OUT%
Syntax: INP(#n)
 OUT #n,a[,b,c...]
Action: Reads one byte from a file previously opened with OPEN.
 Similarly OUT#n sends a byte to a file. The numerical
 expression n is the channel number under which the channel
 was opened.
 INP and OUT without the # can be used for communicating
 with the screen, keyboard etc. eg INP(2) takes a character
 from the keyboard.
 These functions cater for 16 and 32 bit input and output.

Example: a%=CVL(INPUT$(4,#1)) is replaced by a%=INP%(#1)

INP(n)
INP?(n)
OUT[#]n,a[,b..]
OUT?(n)

INP reads a byte from a peripheral device. The numerical
 expression n can accept values 0-5 (see table below), or
 contains a channel number(#n). The command OUT sends a byte
 to a peripheral device. You can send several bytes with one
 OUT command.
 INP? and OUT? determine the input or output status of a

 device. TRUE(-1) is device is ready ortherwise FALSE(0).
 n Device
 0 LST: (list) Printer
 1 AUX: (Auxiliary) RS232
 2 CON: (Console) Keyboard/screen
 3 MID: (MIDI) MIDI Interface
 4 IKB: (Intelligent kbd) Keyboard processor
 5 VID: (Video) Screen

INPAUX$
INPMID$
 Using these two commands, data can be read from the serial
 and MIDI interfaces.
Example:
 DO
 PRINT INPAUX$;
 LOOP

INPUT
Syntax: INPUT ["text",]x{,y,...]
 INPUT ["text";]x[,y,...]
Action: Allows entry of data during program execution.
 If "text" is given, then a string prompt is displayed.
Example:
 INPUT a$
 INPUT "",b$
 INPUT "enter two numbers: ";x,y

INPUT$
Syntax: INPUT$(count[,#n]))
Action: Reads 'count' characters from the keyboard and assigns them
 to a string. Optionally, if the channel number n is
 specified, the characters are read in from a previously
 OPENed channel.

INPUT #n,var1[,var2,var3,...]
LINE INPUT #n,a1$[,a2$,a3$,...]

 These commands make it possible to take data from a
 previously OPENed device. Individual variables or variable
 lists (where the vars are separated by commas) can be
 input.

INSERT
Syntax: INSERT x(i)=y
Action: Inserts an element into an array. The value of the
 expression y is inserted into the position x(i). All
 elements of the array are shifted up by one position, and
 the last element lost. See also DELETE.

INSTR
Syntax: INSTR([n,]a$,b$) OR INSTR(a$,b$[,n])
Action: Searches to see if b$ is present in a$ and returns
 its position.

 'n' is a numeric expression indicating the position in a$
 at which the search is to begin. If 'n' is not given
 the search begins at the first character of A$.
 If b$ is found in a$ the start position is returned.

INT
Syntax: INT(x)
Action: Determines the largest integer that is less than or
 equal to 'x'.

INTIN Address of the VDI integer input block. Also works with
 index INTIN(2).

INTOUT Address of the VDI integer output block. Also works with
 index INTOUT(2).

INT{x} Reads/writes a 2 byte signed integer from/to address x.
 (See also BYTE{}, CARD{}, LONG{}, {}, FLOAT{}, SINGLE{},
 DOUBLE{}, CHAR{}).

KEYDEF
Syntax: KEYDEF n,s$
Action: Assign a string to a Function Key. The number n (1-20) is
 the function key (for 11 and above use shift + function
 key). The string is any string. Whilst using the Basic
 Editor, you must also hold down the Alternate key,
 otherwise the normal menu commands would not work!

KEYGET n
KEYLOOK n
KEYTEST n

 KEYTEST is simialr to INKEY$ and reads a character from the
 keyboard. If no key was pressed since the last input (apart
 from Alternate, Control, Shift and Caps Lock) the returned
 value is zero, otherwise its value corresponds to the key
 in the fashion shown below for KEYGET.

 KEYGET waits for a key to be pressed and then returns a
 long word value corresponding to the key. This 32 bit word
 is constructed as follows:
 Bits 0-8 the ASCII code
 Bits 8-15 Zero
 Bits 16-23 the scan code
 Bits 24-31 status of Shift, Control, Alternate, Caps lock
 as follows:
 Bit Key
 24 Right shift
 25 Left shift
 26 Control
 27 Alternate
 28 Caps Lock

 KEYLOOK allows a character to be read from the keyboard
 buffer, without changing the buffer's contents, as with
 KEYGET or INKEY$.

KEYPAD n Sets the usage of the numerical keypad. The numerical
 expression n is evaluated bit by bit and has the following
 meaning:
 Bit Meaning 0 1
 0 NUMLOCK On Off
 1 NUMLOCK Not Switchable Switchable
 2 CTRL-KEYPAD Normal Cursor
 3 ALT_KEYPAD Normal ASCII
 4 KEYDEF without ALT Off On
 5 KEYDEF with ALT Off On

 With bit 0 set the keypad will act as a 'PC' keypad with
 numlock off ie. it responds with cursor movements.

 With bit 1 set the 'PC' numlock mode can be toggled with
 Alternate and '-', otherwise it can't.

 With bit 2 set, numlock is effecively switched off while
 the Control key is held down. Thus Control-4 (on the
 keypad) produces cursor movements.

 With bit 3 set ASCII values for characters can be typed in
 with the Alternate key held down. When ALT is released the
 character appears.

 With bit 4 set, the character strings assigned with KEYDEF
 to the function keys are output when the key is pressed.
 With bit 5 set, the Alternate key must aslo be held down.

 The deafult when the ST is turned on is KEYPAD 0. with GFA
 Basic in operation it is 46.

KEYPRESS n
 This simulates the pressing of a key. The character with
 the ASCII code contained in the lowest 8 bits of 'n' is
 added to the keyboard buffer. Additionally the status of
 the Shift, Control and Alternate keys may be passed in the
 high order bits as defined in KEYGET. If the ASCII code
 given is zero, a scan code may be passed in bits 16-23.
Example:
 KEYPRESS &H3B0000 presses F1.

Example:
 FOR i&=65 TO 90 ! Simulates the pressing
 KEYPRESS i& ! of keys A-Z
 NEXT i&
 KEYPRESS 13 !followed by Carriage Ret
 INPUT a$!Characters are taken up
 ' !to the first CR.
 PRINT a$

KILL
Syntax: KILL "filespec"

Action: Deletes a file off disk (only one at a time).

L: Enable the passing of numerical expressions to Operating
 system functions or to machine code routines. L: is a long
 word.

Example: ~XBIOS(5,L:log_base%,L:phys_base%,-1)

LEFT$
Syntax: LEFT$(a$[,x])
Action: Returns the first [or first 'x'] character[s] of a string.

LEN
Syntax: LEN(x$)
Action: Returns the length of a string.

LET
Syntax: [LET] var=expression
Action: Assigns a variable with the value of an expression.

LINE
Syntax: LINE x,y,xx,yy
Action: Connects two points ('x,y' & 'xx,yy') with a straight
 line, and is identical to DRAW x,y TO xx,yy.

LINE INPUT
Syntax: LINE INPUT ["text",]var$ [,var$...]
 LINE INPUT ["text";]var$ [,var$...]
Action: Makes it possible to enter a string during program
 execution.
 This command is the same as INPUT except that a comma
 is taken as part of the entered string and not as a
 separator. Only <RETURN> is regarded as a separator.

LINE INPUT# See INPUT#

LIST
Syntax: LIST "filename"
Action: stores the program currently in memory to disk in ASCII
 format. If the 'filename' is an empty string (eg. "") then
 the listing is shown on the screen.
 In all other cases this command is the same as the editor
 menu option SAVE,A.
 Programs to be joined together using the command MERGE
 must be saved using LIST (or SAVE,A from the menu bar)

LLIST
Syntax: LLIST

Action: Prints out the listing of the current program. The setting
 for the type of output is controlled by the '.' commands in
 the editor.

LOAD
Syntax: LOAD "filespec"
Action: Loads a program into memory.

LOC
Syntax: LOC(#n)
Action: Returns the location of the file pointer for the file with
 the channel number 'n'
 The location is given in number of bytes from the start of
 the file.

LOCAL
Syntax: LOCAL var [,var....]
Action: Declares 'var' to be a local variable.

LOCATE
Syntax: LOCATE row,column
Action: Positions the cursor to the specified location.

LOF
Syntax: LOF(#n)
Action: Returns length of file OPENed for channel number 'n'.

LOG LOG10
Syntax: LOG(x)
 LOG10(x)
Action: Determines the natural logarithm (log) or the logarithm
 base 10 (log10) of 'x'.

LONG{x} Reads/writes a 4 byte integer from/to address x.
or (See also BYTE{}, CARD{}, INT{}, FLOAT{}, SINGLE{},
{x} DOUBLE{}, CHAR{}).

LOOP See DO

LOOP UNTIL condition
LOOP WHILE condition
 The commands DO and LOOP can be extended using UNTIL and
 WHILE. LOOP WHILE causes the program to jump back to the DO
 command as long as the condition is true. LOOP UNTIL
 requires the condition to be false to cause the loop back.

LPEEK(x) Reads a 4 byte integer from address x. (In supervisor mode)

LPENX For the STE. Returns the x coordinate of a light pen.
LPENY For the STE. Returns the y coordinate of a light pen.

LPOKE n,x Writes a 4 byte ineger 'x' to address n. Not in supervisor
 mode. (Add an 'S' to do in super mode ie. SLPOKE n,x).

LPOS
Syntax: LPOS(n)
Action: Returns the column in which the printer head (in the printer
 buffer) is located.

LPRINT
Syntax: LPRINT [expressions [,][;][']]
Action: prints data on the printer.
 'expression' is any number of expressions separated by
 commas or semicolons or apostrophes. If none of these is
 given a semicolon is assumed.

LSET
Syntax: LSET var=string
Action: Puts the 'string' in the string variable 'var' justified
 to the left.

L~A Returns the base address of the LINE-A variables.

MALLOC(x) Allocates an area of memory. (GEMDOS 72) If x is -1, then
 the function returns the largest contiguous free memory
 block. If x is positive, then MALLOC reserves that area of
 memory and returns its base address. If 0 is returned then
 there was a fault with the allocation.
 See also RESERVE, MFREE, MSHRINK.

The following 33 commands are for the handling of MATRIXES

MAT ADD
MAT ADD a(),b()
MAT ADD a(),x
MAT ADD a()=b()+c()
MAT BASE
MAT CLR a()
MAT CPY
MAT CPY a([i,j])=b([k,l])[,h,w]
MAT DET x=a([i,j])[,n]
MAT INPUT #i,a()
MAT INV a()=b()
MAT MUL
MAT MUL a(),x

MAT MUL a()=b()*c()
MAT MUL x=a()*b()
MAT MUL x=a()*b()*c()
MAT NORM a(),0
MAT NORM a(),1
MAT ONE a()
MAT PRINT
MAT PRINT [#i]a[,g,n]
MAT QDET x=a([i,j])[,n]
MAT RANG x=a([i,j])[,n]
MAT READ
MAT READ a()
MAT SET a()=x
MAT SUB
MAT SUB a(),b()
MAT SUB a(),x
MAT SUB a()=b()-c()
MAT TRANS a()[=b()]
MAT XCPY
MAT XCPY a([i,j])=b([k,l])[,h,w]

Linear operations with vectors and matrices.
All THE MAT functions described relate only to one and/or two-
dimensional fields with floating point variables.

System commands

MAT BASE 0
MAT BASE 1

The MAT BASE command can only sensibly be used when OPTION BASE 0
has been activated. In this case, MAT BASE 1 can be used to set
the offset for the start of the row and column indexing of one or
two-dimensional fields with floating point variables to 1 for the
matrix operations. MAT BASE 0 resets this offset to 0 after a MAT
BASE 1.

The setting made with MAT BASE n affects the following commands

MAT READ
MAT PRINT
MAT CPY
MAT XCPY
MAT ADD
MAT SUB
MAT MUL

The default is MAT BASE 1.

Generating commands

MAT CLR a()
MAT SET a()=x
MAT ONE a()

a: Name of field with numeric variables
x: aexp

MAT CLR a() corresponds to an ARRAYFILL a(),0, i.e. the command
sets all elements in the field (matrix or vector) a() to a value
of 0.

MAT SET a()=x corresponds to an ARRAYFILL a(),x, i.e. the command
sets all elements in the field a() (matrix or vector) to the
value x.

MAT ONE a() generates from a square matrix a() a uniform matrix,
i.e. a square matrix in which elements a(1,1),a(2,2),...,a(n.n)
are all equally 1 and all other elements equally 0.

Write and Read commands

MAT READ a()
MAT PRINT [#i]a[,g,n]
MAT INPUT #i,a()

i,g,n: iexp
a: Name of field with numerical variables

MAT READ a() reads a previously dimensioned matrix or vector from
DATA rows.

MAT PRINT [#i,]a()[,g,n] outputs a matrix or a vector. Vectors
are output on one row, the elements being separated by commas.
With matrix, each row is followed by a rowfeed.

The output can optionally be redirected with #i, as with PRINT.

If g and n are specified, the numbers are formatted as with
STR$(x,g,n).

MAT INPUT #1,a() reads a matrix or vector from a file in ASCII
format (the format being the reverse of MAT PRINT, commas and
rowfeeds may be varied as with INPUT #).

Copy and Transposition commands

MAT CPY a([i,j])=b([k,l])[,h,w]
MAT XCPY a([i,j])=b([k,l])[,h,w]
MAT TRANS a()[=b()]

a,b: Name of fields with numerical variables
i,j,k,l,h,w: iexp

MAT CPY a([i,j])=b([k,l])[,h,w] copies h rows with w elements
each from matrix b to the row and column offset of matrix a
defined by i,j, starting from the row and column offset of matrix
b defined by l,k.

Special cases

MAT COPY a()=b() copies the complete matrix b into matrix a if
the matrix are of the same order.

Only those elements are copied in this process for which identi-
cal indices are given in both the source and the destination
matrix.

MAT COPY a(i,j)=b() copies matrix b, starting from the row and
column offset defined by MAT BASE, to the row and column offset

of matrix a defined by i,j. Only those elements are copied for
which identical indices are given in both the source and the
destination matrix.

MAT COPY a()=b(i,j) copies matrix b, starting from the row and
column offset defined by i,j, to the offset of matrix a defined
by MAT BASE. Only those elements are copied for which identical
indices are given in both the source and the destination matrix.

MAT COPY a(i,j)=b(k,l) copies matrix b, starting from the row and
column offset defined by k,l, to the offset i,j of matrix a. Only
those elements are copied for which identical indices are given
in both the source and the destination matrix.

MAT COPY a()=b() copies h rows with w elements each from the
matrix b, starting from the row and column offset defined by MAT
BASE, the row and column offset of matrix a defined by MAT BASE.
Only those elements are copied for which identical indices are
given in both the source and the destination matrix.

MAT XCPY a([i,j])=b([k,l])[,h,w] works basically in the same
manner as MAT CPY a([i,j])=b([k,l])[,h,w], except that matrix b
is being transposed while being copied to matrix a, i.e. the rows
and columns of matrix b are swapped while it is copied to matrix
a. Array b remains unchanged, however. Only those elements are
copied for which identical indices are given in both the source
and the destination matrix.

Further special cases

As with MAT CPY a(i,j)=b(k,l),w,h.

If MAT CPY or MAT XCPY are applied to vectors, j and l may be
ignored. Following a DIM a(n),b(m), a() and b() are interpreted
as row vectors, i.e. as matrix of the (1,n) or (1,m) types.

For a and b to be treated as column vectors, they must be
dimensioned as matrix of the (n,1) or (m,1) type, ie. DIM
a(n,1),b(n,1).

If both vectors are of the same order (both are row or column
vectors), MAT CPY must be used. Irrespective of the type of
vectors a and b, MAT CPY always treats both vectors syntactically
as column vectors, so that the correct syntax to be used for MAT
CPY is always

MAT CPY a(n,1)=b(m,1)!
MAT CPY a(3,1)=b(1,1) ! interprets a() and b() as column vectors

For MAT XCPY, one of the two vectors a and b must be explicitly
dimensioned as a row vector, the other as a column vector.

Since MAT XCPY first transposes the second vector before copying
it to the first. For this reason, MAT XCPY can only be used for
DIM a(1,n),b(m,1): a()=row vector, b()=column vector and DIM
a(n,1),b(1,m): a()=column vector, b()=row vector.

Optionally, the parameters h and w can also be used when copying
vectors with MAT CPY or MAT XCPY. However, the following
applies: with MAT CPY, only the h parameter is used for w=>1. No
copying takes place with w=0.

With MAT XCPY, only h is used for w=>1 if b is a column vector to
be copied into a row vector after transposition. No copying takes
place when w=0. On the other hand, only w is used for h=>1 if b
is a row vector which is to be copied to a column vector after
transposition. In this case, no copying takes place if h=0.

MAT TRANS a()=b() copies the transposed from matrix b to matrix a
if a and b are dimensioned accordingly, i.e. the number of rows
from a must correspond to the number of columns in b, and the
number of columns from a to the number of rows of n.

In the case of a square matrix, i.e. one with equal numbers of
rows and columns, MAT TRANS a() may be used. This command swaps
the rows and columns of matrix a and writes the matrix thus
changed back to a.

(The original matrix is lost in the process (but can be restored
with another MAT TRANS a()).

Operation commands

MAT ADD a()=b()+c()
MAT ADD a(),b()
MAT ADD a(),x

MAT SUB a()=b()-c()
MAT SUB a(),b()
MAT SUB a(),x

MAT MUL a()=b()*c()
MAT MUL x=a()*b()
MAT MUL x=a()*b()*c()
MAT MUL a(),x

MAT NORM a(),0
MAT NORM a(),1

MAT DET x=a([i,j])[,n]
MAT QDET x=a([i,j])[,n]
MAT RANG x=a([i,j])[,n]
MAT INV a()=b()

a,b,c: Names of numerical floating point fields
x: aexp; scalar value
i.j,n: aexp

MAT ADD a()=b()+c() is only defined for matrix (vectors) of the
same order, e.g. DIM a(n,m),b(m,m),c(n,m) or DIM a(n),b(n),c(n).
Array c is added to matrix b, element by element, and the result
is written to matrix a.

MAT ADD a(),b() is only defined for matrix (vectors) of the same
order, e.g. DIM a(n,m),b(n.m) or DIM a(n),b(n). Array b is added
to matrix a, element by element, and the result is written to
matrix a. The original matrix a is lost in the process.

MAT ADD a(),x is defined for all matrix (vectors). Here, the

scalar x is added to matrix a, element by element, and the result
is written to matrix a. The original matrix a is lost in the
process.

MAT SUB a()=b()+c() is only defined for matrix (vectors) of the
same order, e.g. DIM a(n,m),b(n,m),c(n,m) or DIM a(n),b(n),c(n).
Array c is subtracted from matrix b, element by element, and the
result is written to matrix a.

MAT SUB a(),b() is only defined for matrix (vectors) of the same
order, e.g. DIM a(n,m),b(n,m) or DIM a(n),b(n). Array b is
subtracted from matrix a, element by element, and the result
written to matrix a. The original matrix a is lost in the process.

MAT SUB a(),x is defined for all matrix (vectors). Here, the
scalar x is subtracted from matrix x, element by element, and the
result is written to matrix a. The original matrix a is lost in
the process.

MAT MUL a()=b()*c() is defined for matrix of an "appropriate"
order. Arrays b and c are multiplied with each other. The result
of this multiplication is written to matrix a. In order for the
result to be defined, the matrix on the left (matrix b in this
case) must have the same number of columns as the matrix on the
right (c in this case) has rows. Array a, in this case, must have
as many rows as b and as many columns as c.

Arrays are multiplied as "row by column", i.e. element a(i.j) is
obtained by multiplying the elements in the ith row of matrix b
with the elements in the jth column of matrix c, element by
element, and then adding up the individual products.

With vectors instead of matrix, MAT MUL a()=b()*c() results in
the dyadic (or external) product of two vectors.

MAT MUL x=a()*b() is only defined for vectors with an equal
number of elements. The result x is the scalar product (the so-
called interior product) of vectors a and b. The scalar product
of two vectors is defined as the sum of n products
a(i)*b(i),i=1,...,n.

MAT MUL x=a()*b()*c() is defined for qualified Vectors a and c
as well as qualified Matrix b().

MAT NORM a(),0 or MAT NORM a(),1 are defined for matrix and
vectors. MAT NORM a(),0 normalises a matrix (a vector) by rows,
MAT NORM a(),1 by columns. This means that after a normalisation
by rows (by columns) the sum of the squares of all elements in
each row (column) is identical at 1.

MAT DET x=a([i,j])[,n] calculates the determinants of a square
matrix of the (n,n) type. The row and column offsets are preset
to a(0,0) or a(1,1), depending on MAT BASE 0 or MAT BASE 1,
assuming that OPTION BASE 1 is enabled. It is also possible,
however, to calculate the determinant of a square part matrix. To
do this, the row and column offsets of a() must be specified as i
and j, and the number of elements in the part matrix as n. A part
matrix of the (n,n) type is then created internally starting from
the "position" ith row, jth column.

MAT QDET x=a([i,j])[,n] works in the same manner as MAT DET
x = a([i,j])[,n], except that it has been optimised for speed

rather than accuracy. Both will normally produce identical re-
sults. With "critical" matrix, whose determinant is close to 0,
you should always use MAT DET, though.

MAT RANG x=a([i,j])[,n] outputs the rank of a square matrix. As
with MAT DET or MAT QDET, you can select any row and column
offset. The number of elements in the part matrix must be
specified with n. This creates a part matrix of the (n,n) type
internally, starting from the "position ith row, jth column.

MAT INV b()=a() is used to determine the inverses of a square
matrix. The inverse of matrix a() is written to matrix b(), hence
b() must be of the same type as a().

MAX
Syntax: MAX(x [,y,z,...]) or MAX(a$[,y$,z$....])
Action: Returns the greatest value (or largest string) from
 a list of expressions.

MENU(x) Returns the information about an event in the variable
 'x' (-2 to 15). In the case where an item in a menu is
 selected, the index of that item is found in MENU(0).
 MENU(-2) is the address of the message buffer.
 MENU(-1) is the address of the menu object tree.
 The Message Buffer lies in the the variables MENU(1)
 to MENU(8) and the AES Integer Output Block in MENU(9)
 to MENU(15).
 The Identification number of the event is in MENU(1).
 The other elements of the message bufffer contain
 various values, depending on the type of event that
 occured.

 MENU(1)=10 A Menu Item was selected.
 MENU(0) Menu item index in the item list
 MENU(4) Object number of the menu title
 MENU(5) Object number of the chosen menu
 item

 MENU(1)=20 A window redraw is required
 MENU(4) ID number (handle) of the window
 MENU(5),(6) Coordinates of top left corner of
 the window
 MENU(7),(8) Width & height of the window area

 MENU(1)=21 A window was clicked (activated)
 MENU(4) ID number (handle) of the window

 MENU(1)=22 The close box of a window was
 clicked on
 MENU(4) ID number (handle) of the window

 MENU(1)=23 The full box was clicked on
 MENU(4) ID number (handle) of the window

 MENU(1)=24 One of the four arrow boxes, or a
 slider bar area was clciked. The
 movement of a slider is detected as

 below, MENU(1)=24 only when the
 grey area is clicked on.
 MENU(4) ID number (handle) of the window
 MENU(5) The area of the window that was
 clicked:
 0: Above the vertical slider
 1: Below " " "
 2: Up arrow
 3: Down arrow
 4: Left of the horizontal slider
 5: Right " " " "
 6: Left arrow
 7: Right arrow

 MENU(1)=25 The horizontal slider was moved
 MENU(4) ID number (handle) of the window
 MENU(5) Position of the moved slider (1 to
 1000)

 MENU(1)=26 The vertical slider was moved
 MENU(4) ID number (handle) of the window
 MENU(5) Position of the moved slider (1 to
 1000)

 MENU(1)=27 The size of the window was changed
 (using the size box)
 MENU(4) ID number (handle) of the window
 MENU(5),(6) New x and y coordinates of top left
 MENU(7),(8) New width & height

 MENU(1)=28 The window's position was changed
 same parameters as above

 MENU(1)=29 A new GEM window was activated.
 MENU(4) ID number (handle) of the window

 MENU(1)=40 An Accessory was selected. This
 value can only be received by an
 accessory, which should chech the
 value in MENU(5) to see if it is
 that one being referred to.
 MENU(5) ID of the accessory

 MENU(1)=41 An accessory was closed. This value
 can only be received from an
 accessory.
 MENU(5) ID of the accessory

 The varaible MENU(9) contains bit information on which
 kind of event has occurred. If the bit for the
 appropriate event is set, the variables MENU(9) to
 MENU(15) and GINTOUT(0) to GINTOUT(6) will contain
 information as follows:
 Bit 0 Keyboard
 Bit 1 Mouse button
 Bit 2 Mouse has entered/left rectangle 1
 Bit 3 Mouse has entered/left rectangle 2
 Bit 4 A message arrived in the message buffer
 Bit 5 Timer event

 MENU(10) x position of mouse when event terminated

 MENU(11) y position of mouse when event terminated
 MENU(12) Mouse buttons pressed:
 0 = none
 1 = left
 2 = right
 3 = both buttons
 See also ON MENU BUTTON

 MENU(13) supplies the status of the keyboard shift
 keys in a bit pattern:
 Bit 0 = right shift
 Bit 1 = left shift
 Bit 2 = control
 Bit 3 = alternate
 See also ON MENU KEY

 MENU(14) Gives information about a pressed key. The
 low order byte contains the ASCII code, and
 the high order byte, the keyboard scan code

 MENU(15) Returns the number of mouse clicks that
 caused the event

MENU
Syntax: MENU m$()
Action: Displays a menu bar. The string array m$() contains
 the headings, entries and reserved space for
 accessories for the menu bar. The following format
 must be adhered to:
 m$(0) Name of the accessory menu heading
 m$(1) Name of the first entry in the first menu
 m$(2) A line of minus signs
 m$(3)-m$(8) Reserved space for accessories. These
 elements need only be 1 character long.
 m$(9) An empty string, which marks the end of
 the first menu.
 All further menu entries have the following format:
 1. Heading of the menu
 2. List of menu entries
 3. An empty string which marks the end of the menu.

 After the last entry, a further empty string signifies
 the end of the entire pull down menu.

 eg:

DIM entry$(20)
DATA " Desk "," Test "
DATA ----------,1,2,3,4,5,6,""
DATA " File "," Load "," Save "
DATA --------," Quit ",""
DATA " Titles "," Entry 1 "," Entry 2 ",""
DATA End
i%=-1
REPEAT
 INC i%
 READ entry$(i%)
UNTIL entry$(i%)="End"
entry$(i%)=""
MENU entry$()
ON MENU GOSUB evaluate

'
REPEAT
 ON MENU
UNTIL MOUSEK AND 2
'
PROCEDURE evaluate
 MENU OFF
 ' MENU(0) contains array index of selected item
 m%=MENU(0)
 PRINT entry$(m%)
 '
 ALERT 0,"Tick before item ?",0,"YES|NO",a%
 IF a%=1
 MENU m%,1
 ELSE
 MENU m%,0
 ENDIF
 '
 ALERT 0,"Lightened characters | (Not selectable)",0,"YES|NO",a%
 IF a%=1
 MENU m%,2
 ELSE
 MENU m%,3
 ENDIF
RETURN

MENU x,y
Action: The x-th entry of a menu can be given certain (y)
 attributes:
 0 remove tick from in front of menu entry
 1 install tick " " " " "
 2 make menu entry non selectable (light text)
 3 make menu entry selectable (normal text)
 See MENU example.

MENU KILL
Action: Deactivates a menu, but does not remove it from the
 screen. Also turns off the ON MENU GOSUB options.

MENU OFF
Action: Returns a menu title to 'normal' display. (After an
 item is chosen from a menu, the title is shown in
 reverse video).

MENU_BAR
Syntax: a%=MENU_BAR(tree%,flag)
Action: Displays/erases a menu bar (from a resource file)
 Returns 0 if an error occurred.
 tree = address of the menu object tree
 flag - 1 display bar
 - 2 erase bar
 See also MENU x$ and MENU KILL

MENU_ICHECK
Syntax: a%=MENU_ICHECK(tree,item,flag)
Action: Deletes/displays a tick against a menu item.
 tree = address of the menu object tree
 item = object number of the menu item

 flag - 1 delete tick
 - 2 display tick
 See also MENU x,0 and MENU x,1

MENU_IENABLE
Syntax: a%=MENU_IENABLE(tree,item,flag)
Action: Enables/disables a menu entry.
 tree = address of the menu object tree
 item = object number of the menu entry
 flag - 1 disable
 - 2 enable
 See also MENU x,2 and MENU x,3

MENU_REGISTER
Syntax: a%=MENU_REGISTER(ap_id,m_text$)
Action: Give a desk accessory a name, and insert it into the
 accessory menu entries. (provided the number of Accs
 is less than 6).
 Returns the object number of the appropriate menu
 item:
 0-5 for a valid result
 -1 no more entries possible
 ap_id = ID number of the accessory
 m_text$ = name for the Accessory

MENU_TEXT
Syntax: a%=MENU_TEXT(tree,item,new_text$)
Action: Changes the text of a menu item.
 Returns 0 on error.
 tree = address of the menu object tree
 item = object number of the menu item
 new_text$ the new text for the menu entry (may not
 exceed the old text length)

MENU_TNORMAL
Syntax: a%=MENU_TNORMAL(tree,title,flag)
Action: Switches the menu title to normal/inverse video.
 Returns 0 on error.
 tree = address of the menu object tree
 item = object number of the menu item
 flag - 1 inverse video
 - 2 normal video
 See MENU OFF

MFREE
Syntax: a%=MFREE(y)
Action: (GEMDOS 73) Releases the storage location reserved
 with MALLOC. The parameter 'y' specifies the start of
 the area of memory to be released. Returns 0 if no
 error occurred, otherwise negative result.

MID$
Syntax: MID$(a$,x[,y]) (as a function)

Action: Returns 'y' characters in a string from the positon 'x'
 of the string 'a$'. If x is larger than the length of
 a$, then a null string is returned. If y is omitted,
 then the function returns the whole of the string from
 position x onwards.

MID$
Syntax: MID$(a$,x[,y]) (as a command)
Action: MID$ used as a command, makes it possible to replace
 part of a string variable a$ with the string
 expression b$. So with MID$(a$,x,y)=b$, characters
 from b$ will overwrite those in a$, starting at the x-
 th postion of a$. The optional parameter y determines
 how many characters of b$ are used. If y is omitted,
 then as many characters as possible of a$ are replaced
 with those from b$. The length of a$ is unchanged, so
 that no charatcers will be written beyond the end of
 a$
 eg:
 a$="GFA SYSTEMTECHNIK"
 MID$(a$,5)="BASIC "
 would result in a$ being "GFA BASIC TECHNIK"

MIN
Syntax: MIN(expression [,expression...])
Action: Returns the smallest value (or smallest string) from
 a list of expressions.

MKDIR
Syntax: MKDIR "directory name"
Action: Creates a new directory.
 'directory name' is the name of the new directory.

MKI$ MKL$ MKS$ MKF$ MKD$
Syntax: MKI$(N)
 MKL$(N)
 MKS$(N)
 MKF$(N)
 MKD$(N)
Action: Transforms a number into a character string.
 MKI$ 16-bit number into a 2-byte string.
 MKL$ 32-bit number into a 4-byte string.
 MKS$ a number into an atari basic 4-byte format.
 MKF$ a number into GFA Basics own 6-byte format.
 MKD$ a number into a Mbasic compatible 8-byte format.

 Every number that is to be stored in a random access
 file must first be transformed with on of the above
 functions.
 The example above shows that GFA Basic stores numbers
 internally in the 6-byte format which can also be
 created using the MKF$ function.
 See also CVI,CVL,CVD,CVF

MOD
Syntax: a=x MOD y or a=MOD(x,y)
Action: Produces the remainder of the division of x by y.
 The command in brackets operates in integer
 arithmetic.

MODE
Syntax: MODE n
Action: With MODE the representation of decimal point and the
 'thousands comma' are interpreted by PRINT USING (and
 also by STR$ with 3 parameters).
 Also selects the format of date representation used by
 DATE$, SETTIME, and FILES.

 MODE USING DATE$
 0 #,###.## 16.05.1988
 1 #,###.## 05/16/1988
 2 #.###,## 16.05.1988
 3 #.###,## 05/16/1988

MONITOR
Syntax: MONITOR [x]
Action: Calls a monitor resident in memory. This instruction
 causes an illegal instruction vector. (address 16).
 The parameter x is passed via the register D0.

MOUSEX
MOUSEY
MOUSEK
MOUSE mx,my,mk
Syntax: MOUSE x,y,k
 x=MOUSEX
 y=MOUSEY
 k=MOUSEK
Action: Determines the mouse position (x,y) and the status of
 the mouse buttons:
 k=0 no buttons pressed
 k=1 left button
 k=2 right button
 k=3 both buttons

MSHRINK
Syntax: a%=MSHRINK(y,z)
Action: (GEMDOS 74) Reduces the size of a storage area
 previously allocated with MALLOC. y specifies the
 address of the area,z gives the required size.
 Returns 0 if no error, -40 if incorrect address, or -
 67 if size wrong.
 See also RESERVE MALLOC MFREE

MUL
Syntax: MUL var,n
Action: Multiplies the value 'var' by 'n'.
 same as var=var*n but executes 30% faster.

MUL() Same as for MUL. but integers only.

MW_OUT
Syntax: MWOUT mask,data
 This command controls the STE-Internal Micro-Wire-
 Interface, and is currently used for controlling
 sound.

 MWOUT &H7FF,x

 x=&X10 011 ddd ddd Set Master Volume
 000 000 -80 dB
 010 100 -40 dB
 101 xxx 0 dB

 The value of the last 5 Bits is eqivalent to HALF of
 the volume in dB.

 x=&X10 101 xdd ddd Set Right Channel Volume
 00 000 -40 dB
 01 010 -20 dB
 10 1xx 0 dB

 x=&X10 100 xdd ddd Set Right Channel Volume

 The last 4 Bits*2 = dB

 x=&X10 010 xxd ddd Set Treble
 x=&X10 001 xxd ddd Set Bass
 0 000 -12dB
 0 110 0 dB (flat)
 1 100 +12 dB

 x=&X10 000 xxx xdd Set Mix
 00 -12dB
 01 Mix GI Sound (normal ST)
 10 Not Mix
 11 Reserved

Example: MWOUT &H7FF,&X10000000010 Switches the ST's sound off.

NAME
Syntax: NAME "oldfile" AS "newfile"
Action: Renames an existing file. The contents of the file are
 not affected.

NEW
Syntax: NEW
Action: Deletes the program currently in memory and clears all
 variables.

NOT
Syntax: NOT x
Action: Negates a given logical expression.

The following 19 commands belong to the AES Object library.

OBJC_ADD
Syntax: a%=OBJC_ADD(tree,parent,child)
Action: Adds an object to a given tree and pointers between
 the existing objects and the new object are created.
 Returns 0 on error.
 tree address of the object tree
 parent object number of the parent object
 child object number of the child to be added.

OBJC_CHANGE
Syntax: a%=OBJC_CHANGE(tree,obj,res,cx,cy,cw,ch,new_status,re_draw)
Action: Changes the status of an object.
 Returns 0 on error.
 tree address of the object tree
 obj number of the object to be changed
 res reserved (always 0)
 cx,cy coordinates of top left corner of clipping
 rectangle
 cw,ch width & height of clipping rectangle
 new_status new object status
 re_draw 1 = redraw object
 0 = don't redraw

OBJC_DELETE
Syntax: a%=OBJC-DELETE(tree,del_obj)
Action: An object is deleted from an object tree by removing
 the pointers. The object is still there and can be
 restored by repairing the pointers.
 Rteurns 0 on error.
 tree address of the object tree
 del_obj Object number of the object to delete.

OBJC_DRAW
Syntax: a%=OBJC_DRAW(tree,start_obj,depth,cx,cy,cw,ch)
Action: Draws whole objects or part of objects on screen. A
 clipping rectangle is specified, to which the drawing
 is limited.
 Returns 0 on error.
 tree address of the object tree
 start_obj number of the first object to be drawn
 depth Number of object levels to be drawn
 cx,cy coordinates of top left corner of clipping
 rectangle
 cw,ch width & height of clipping rectangle

OBJC_EDIT
Syntax: a%=OBJC_EDIT(tree,obj,char,old_pos,flag,new_pos)
Action: Allows input and editing in G_TEXT and G_BOXTEXT
 object types.
 Returns 0 on error.

 tree address of the object tree
 obj number of the object to be changed
 char input character (incl. scan code)
 old_pos current cursor position in input string
 flag funtion:
 0 ED_START -reserved-
 1 ED_INIT string is formatted & cursor on
 2 ED_CHAR Character processed & string
 redisplayed
 3 ED_END Text cursor switched off
 new_pos returns new pos of text cursor to this
 variable.

OBJC_FIND
Syntax: a%=OBJC_FIND(tree,start_obj,depth,fx,fy)
Action: Determines the object, if any, which is at the
 coordinates specified in fx,fy.
 Returns the object number, or -1 if no object found.
 tree address of the object tree
 start_obj number of the object from where to search
 depth Number of object levels to be searched
 fx x coordinate (usually MOUSEX)
 fy y coordinate (usually MOUSEY)

OBJC_OFFSET
Syntax: a%=OBJC_OFFSET(tree,obj,x_abs,y_abs)
Action: Calculates the absolute screen coordinates of the
 specified object.
 Returns 0 on error.
 tree address of the object tree
 obj object number
 x_abs,y_abs returns the x,y coordinates to these
 variables.

OBJC_ORDER
Syntax: a%=OBJC_ORDER(tree,obj,new_pos)
Action: re-positions an object within a tree.
 Returns 0 on error.
 tree address of the object tree
 obj object number
 new_pos new level number

OB_ADR
Syntax: adr%=OB_ADR(tree,obj)
Action: Gets the address of an individual object.
 Returns 0 on error.
 tree address of the object tree
 obj object number

OB_FLAGS
Syntax: a%=OB_FLAGS(tree,obj)
Action: Gets the status of the flags for an object.
 Returns 0 on error.
 tree address of the object tree
 obj object number

 OB_FLAGS Bit No.
 Normal -
 Selectable 0
 Default 1
 Exit 2
 Editable 3
 Rbutton 4
 Lastob 5
 Touchexit 6
 Hidetree 7
 Indirect 8

OB_H
Syntax: h%=OB_H(tree,obj)
Action: Returns the height of an object
 Returns 0 on error.
 tree address of the object tree
 obj object number

OB_HEAD
Syntax: h%=OB_HEAD(tree,obj)
Action: Points to the object's first child, or -1 if none.

OB_NEXT
Syntax: n%=OB_NEXT(tree,obj)
Action: Points to the following object on the same level, or,
 if it is the last object on that level, to the parent
 object, or -1 if none.

OB_SPEC
Syntax: a%=OB_SPEC(tree,obj)
Action: Returns the address of the the data structure for the
 object.

OB_STATE
Syntax: s%=OB_STATE(tree,obj)
Action: returns the status of an object:
 OB_STATE Bit No.
 Normal -
 Selected 0
 Crossed 1
 Checked 2
 Disabled 3
 Outlined 4
 Shadowed 5

OB_TAIL
Syntax: t%=OB_TAIL(tree,obj)
Action: Points to the objects last child, or -1 if none.

OB_TYPE
Syntax: t&=OB_TYPE(tree,obj)
Action: Returns the type of object specified.

OB_W
Syntax: w%=OB_W(tree,obj)
Action: Returns the width of an object

OB_X
OB_Y
Syntax: x (or y) =OB_X or OB_Y(tree,obj)
Action: Rteurns the relative coordinates of the object
 relative to its parent (or the screen if it is the
 parent)

OCT$
Syntax: OCT$(x[,n])
Action: Changes the value 'x' into a string containing the
 value of 'x' in octal form (prefix &O), the optional
 parameter n, giving the number of characters to print.

ODD
Syntax: ODD(n)
Action: Determines whether a number is odd. (see also even)

ON BREAK Syntax: ON BREAK
 ON BREAK CONT
 ON BREAK GOSUB name
Action: ON BREAK CONT makes it impossible to stop a program
 by pressing break (<ALT><SHIFT><CNTRL>).
 ON BREAK reactivates it.
 ON BREAK GOSUB makes it possible to jump to the procedure
 'name' by the above key combination.

ON ERROR
Syntax: ON ERROR
 ON ERROR GOSUB name
Action: Performs the procedure 'name' when an error occurs.
 The program is not interrupted and no error message
 is given.
 See also RESUME

ON...GOSUB
Syntax: ON x GOSUB proc1,proc2......
Action: Depending on the result of 'x' one of several given
 procedures is processed.
 'proc1' .. is a list of procedure names separated by
 commas. The result of 'x' denotes which procedure is
 carried out.
 Eg: If result = 1 then the first procedure in the
 procedure list is processed.
 If result = 2 then the second procedure in the procedure
 list is processed.
 If result = 3 then the third procedure in the procedure
 list is processed and so on.
 If the value is not in the range then no procedure
 will be executed.

ON MENU
Syntax: ON MENU[t]
Action: This command handles EVENTs. Prior to use, the
 required action should be specified with an ON MENU
 xxx GOSUB command. For constant supervision of events,
 ON MENU is usually found in a loop.
 The parameter t is the time in thousandths of a second
 to elapse before the ON MENU command is terminated.

ON MENU xxx GOSUB
Syntax: ON MENU BUTTON clicks,but,state GOSUB proc
Action: Sets up the action to be taken when one or more mouse
 clicks are received. With a subsequent ON MENU
 command, the named procedure will be branched to if
 the condition imposed by the parameters are met.
 clicks - sets the maximum number of clicks that
 will generate a response.
 button - The expected button combination:
 0 - any
 1 - left
 2 - right
 3 - both
 state - Specifies which button state (up or down)
 will cause the event. 0 = up, 1 = down
 proc - The procedure to branch to.

Syntax: ON MENU GOSUB proc
Action: The procedure to which control will be passed on
 selection of a menu entry is determined. If an
 accessory is currently open, the procedure will not be
 called.
 See also MENU(0)

Syntax: ON MENU IBOX n,x,y,b,h GOSUB proc
Action: Monitors the mouse coordinates, and branches to the
 named procedure if the mouse enters Y
 k=MOUSEK
Action: Determines the mouse position (x,y) and the status of
 the mouse buttons:
 k=0 no buttons pressed
 k=1 left button
 k=2 right button
 k=3 both buttons

Syntax: ON MENU KEY GOSUB proc
Action: Monitors the keyboard, and branches to proc if a key
 was pressed during an ON MENU loop.
 See MENU(13) & MENU(14) for the keys.

Syntax: ON MENU MESSAGE GOSUB proc
Action: Brances to proc if a message arrives in the message

 buffer during an ON MENU loop.
 See MENU(x) for the messages.

Syntax: ON MENU OBOX n,x,y,w,h GOSUB proc
Action: Monitors the mouse coordinates, and branches to the
 named procedure if the mouse leaves a rectangular
 screen area. It is possible to wait for two such boxes
 to be left (n can be 1 or 2). x and y are the top
 left coordinates of the rectangle, w & h being its
 width and height. Continuous monitoring is done with
 ON MENU.

OPEN
Syntax: OPEN mode$,#n,name$[,len]
Action: Opens a data channel to a file or a peripheral device.
 'mode' must always be written in quotes and is one
 of the following :-
 'O' (output) opens a write file creating a new file if
 needed.
 'I' (input) opens a read file.
 'A' (append) enables data to be annexed to an existing
 file.
 'U' (update) read/write, but file must be opened by 'o'
 first.
 'R' stands for random access file.
 Instead of a filename, a periphral device can ne
 specified. The expression 'len' is used only with
 Random Access mode.
 the following can be used instead of filenames :-
 'CON:' for the console.
 'LST:' or 'prn:' for the printer.
 'AUX:' for the serial interface.
 'MID:' for midi.
 'VID:' for the console in transparent mode
 (commands are produced but not executed).
 'IKB:' for direct access to the keyboard controller.
 'STD:'. (This is the same as 'Stdin','Stdout' resp. in
 C-programs.) So you can use a shell to redirect the
 output of a GFA-BASIC program.

 GFABASIC TEST >DUMMY

 This line starts GFA BASIC and the program TEST.PRG
 Any output via 'STD:' is redirected to the file DUMMY.
 IMPORTANT: CONTROL-C will cause a hang- up when given
 while reading/writing DUMMY. the default for input/output
 is the keyboard/console.
 The numerical expression 'n' contains the channel
 number (0-99), and the variable name$, the access path
 and filename.

OPENW
Syntax: OPENW nr[,x a rectangular
 screen area. It is possible to wait for two such
 boxes to be entered (n can be 1 or 2). x and y are
 the top left coordinates of the rectangle, w & h being
 its width and height. Continuous monitoring is done
 with ON MENU.

OPTION BASE
Syntax: OPTION BASE 0 (default)
 OPTION BASE 1
Action: This command can determine whether an array is to
 contain a zero element or not. ie. with OPTION BASE 0,
 doing a DIM a%(10) will allow a%(0) to exist.

OR
Syntax: x OR y
Action: The command OR (disjunction) checks whether at least
 one of two logical expressions x and y is TRUE. Only
 if x and y are both FALSE will the result FALSE be
 produced.

OR()
Syntax: OR(x,y)
Action: The result of OR contains bits set in the places in
 which bits are set in either x or y or both.

OTHERWISE See SELECT

OUT
Syntax: OUT [#]n,a[,b..]
Action: Transfers a byte[s] with the value 'a' to a peripheral
 device or file 'n'.
 See OPEN for valid peripherals.
 See also INP

OUT# See INP#

OUT?
Syntax: OUT?(n)
Action: Determines the output status of a periphery.
 This function returns 0 if a character can be output.
 (see also INP?)

PADT(i)
Syntax: a=PADT(i)
Action: Reads the paddle buttons on the STE

PADX(i)
PADY(i)
Syntax: a=PADX(i) or PADY(i)
Action: Reads the x or y position of the paddles on the STE. i
 can be 0 or 1.

PAUSE
Syntax: PAUSE x

Action: Interrupts a program for exactly x/50 seconds.
 See also DELAY.

PBOX
Syntax: PBOX x,y,x1,y1
Action: Draws a filled rectangle with the coordinates of the
 two opposite corners specified by x,y and x1,y1.
 See also BOX,PRBOX, RBOX.

PCIRCLE
Syntax: PCIRCLE x,y,r[,w1,w2]
Action: Draws a filled circle with centre coordinates at x,y
 and a radius r. Additional start and end angles w1 and
 w2 can be specified to draw a circular arc.

PEEK DPEEK LPEEK
Syntax: PEEK(x)
 DPEEK(x)
 LPEEK(x)
Action: Returns the contents of the memory at address 'x'
 PEEK returns a 1 byte at address x
 DPEEK returns a 2 byte number from x and x+1
 LPEEK returns a 4 byte number from x, x+1, x+2 & x+3
 for DPEEK and LPEEK, 'x' must be an even number.

PELLIPSE
Syntax: PELLIPSE x,y,rx,ry [,phi0,phi1]
Action: Draws a filled ellipse at x,y, having 'rx' as length of the
 horizontal axis and 'ry' as length of the vertical axis
 The optional angles 'phi0' & 'phi1' give start and end
 angles in tenths of a degree, to create an elliptical arc.

PI
Syntax: PI
Action: Returns the value of PI. The value of PI is
 3.141592653.....etc.

PLOT
Syntax: PLOT x,y
Action: Plots a point on the screen coordinates 'x,y'.
 This command is the same as draw x,y.

POINT
Syntax: POINT x,y
Action: Checks if a graphic dot (at 'x,y') has been set and
 returns its colour value.

POKE DPOKE LPOKE
Syntax: POKE x,n
 DPOKE x,n
 LPOKE x,n
Action: Writes 1, 2 or 4 bytes into memory at an address which
 starts at 'x'.
 The value of 'x' must be an even number for DPOKE and
 LPOKE.

POLYLINE POLYFILL POLYMARK
Syntax: POLYLINE n,x(),y()[OFFSETx_off,y_off]
 POLYFILL n,x(),y()[OFFSETx_off,y_off]
 POLYMARK n,x(),y()[OFFSETx_off,y_off]
Action: POLYLINE draws a polygon with n corners. The x,y
 coordinates for the corner pointa are given in arrays
 x() and y(). The first and last points are
 automatically connected. The optional parameter OFFSET
 can be added to these coordinates.
 POLYFILL fills the polygon with the pattern previously
 defined by DEFFILL.
 POLYMARK marks the corner points with the shape
 defined by DEFMARK.

POS
Syntax: POS(n)
Action: Returns the column in which the cursor is positioned.
 'n', a hypothetical argument, is optional.
 See also CRSCOL, CRSLIN, TAB, HTAB, VTAB.

PRBOX
Syntax: PRBOX x,y,x1,y1
Action: Draws a filled rectangle with rounded corners.
 See also BOX, PBOX, RBOX.

PRED
Syntax: a$=PRED(b$)
Action: Supplies the character with the ASCII code one less
 than that of the first character of the specified
 string.
 See also SUCC.

PRED()
Syntax: i%=PRED(n%)
Action: Returns the next lower number of the integer argument.
 See also SUCC().

PRINT
Syntax: PRINT
 PRINT expression
Action: Displays information on the screen.
 'expr' can be any number of expressions which must be

 separated by commas, semicolons or apostrophes.
 ; -items are printed one after an other in one line.
 , -items are printed at intervals of 16 columns.
 ' -each apostrophe causes a space to be printed.

PRINT AT
Syntax: PRINT AT(column,row);expression
Action: Prints 'expression' at a specified row and column.
 NB. These start at 1, not 0.

PRINT USING
Syntax: PRINT USING format$,expression[;]
 PRINT AT(column,row);USING format$,expression[;]
Action: Prints formatted digits and character strings.
 format$ is a string expression which sets the printing
 format using a list of expressions separated by commas.

 # reserves space for a digit.
 . position of the decimal point.
 + executes a plus sign.
 - reserves space for a minus sign.
 * zeros before the comma are replaced by * otherwise
 the same as #.
 $ prefix $.
 , insertion of a comma.
 ^ execution in exponent form E+
 ! indicates that the first character of a string is
 issued.
 & the whole string is issued.
 \..\ as many characters as the length of \..\ is issued
 (including back-slashes).
 - prints the proceeding character.

PRINT TAB
Syntax: PRINT TAB(n)
Action: Prints spaces until POS(0) reaches n. If POS(0)
 already exceeds n then a Line Feed/Carriage Return is
 executed first.

PRINT#
Syntax: PRINT #n,expression
 PRINT #n,USING format$,expression
Action: Outputs data to a specified channel n (0-99). PRINT#
 USING allows formatted data to be output.

PROCEDURE
Syntax: PROCEDURE proc[(var1,var2,...)]
Action: Marks the beginning of a procedure.
 Basic will only process a procedure when it is called
 by the command GOSUB (or by simply naming the
 procedure, or using @proc. If it comes across the command

 procedure during 'normal' running of the program, it
 considers it to be the end of the program.
 Not only the values of variable, but also the
 variable's address can be passed to procedures using
 the VAR command in the Procedure's header.

PSAVE
Syntax: PSAVE f$
Action: Saves the current program to disk with the name f$, it
 is saved with protection, and cannot be subsequently
 listed on re-loading; PSAVEd programs RUN
 automatically on loading.
 See also SAVE

PTSIN Address of the VDI point input table
PTSOUT Address of the VDI point output table
 These two commands can be used with index, to address
 the array directly. eg. PTSIN(0).

PTST()
Syntax: a=PTST(x,y)
Action: Corresponds to the POINT command. Returns the colour
 of the pixel at x,y.

PUT
Syntax: PUT x,y,section$[,mode]
Action: Places a graphics block on the screen at x,y which
 has been previously grabbed by GET, and stored in
 section$.
 'mode' (optional) sets the way the image is placed.
 0 - All points are cleared
 1 - s AND d Only points set in both remain set.
 2 - s AND (NOT d) Sets only points which are set in
 the source and clear in the
 destination.
 3 - s Overwrite (default GRAPHMODE 1)
 4 - (NOT s)AND d
 5 - d
 6 - s XOR d
 7 - s OR d
 8 - NOT(s OR d)
 9 - NOT(s XOR d)
 10 NOT d
 11 s OR(NOT d)
 12 NOT s
 13 (NOT s)OR d
 14 NOT(s AND d)
 15 1 All points set.
 The important ones are:
 3 Repalce
 4 XOR
 7 Transparent
 13 Inverse Transparent.

PUT #
Syntax: PUT #n[,r]
Action: Writes a record to a random access file.
 'n' data channel number (0 to 99).
 'r' is an integer expression between 1 and the number
 of records in the file (max 65535) and denotes the
 record number of the record to be written.
 See also GET #, RECORD #

QSORT
Syntax: QSORT a(s) [OFFSET o] [WITH i()] [,n[,j%()]]
 QSORT x$(s) WITH i() [,n[,j%()]]
Action: Sorts the elements of an array. 's' can be a minus
 sign or a plus sign, indicating an ascending sort(+)
 or a descending sort(-), the default being ascending.
 The parameter 'n' specifies that only the first 'n'
 elements are to be sorted. (Depends on OPTION BASE)
 whether 0 or 1. If n=-1, then all elements are sorted.
 When a further array is specified, then that array
 will be sorted along with the first array.
 OFFSET determines how many characters off the
 beginning shall not be considered.
 During sorting of string arrays a sorting criteria can
 be specified in an array of at least 256 elements by
 using WITH. Without using this option, a normal ASCII
 sort is used.
 eg:
 DIM a$(256)
 FILES "*.*" TO "liste"
 OPEN "i",#1,"liste"
 RECALL #1,a$(),-1,x%
 CLOSE #1
 QSORT a$() OFFSET 13,x%
 OPEN "o",#1,"con:"
 STORE #1,a$(),x%
 CLOSE
 Saves the directory as 'LISTE', then reloads the file,
 sorts the array, not on name but on file length.
 DIM x%(20)
 PRINT "Unsorted: ";
 FOR i%=0 TO 10
 x%(i%)=RAND(9)+1
 PRINT x%(i%);" ";
 NEXT i%
 PRINT
 '
 QSORT x%(),11
 PRINT "Ascending sort: ";
 FOR i%=0 TO 10
 PRINT x%(i%);" ";
 NEXT i%
 PRINT
 '
 QSORT x%(-),11
 PRINT "Descending sort: ";
 FOR i%=0 TO 10
 PRINT x%(i%);" ";
 NEXT i%

 PRINT

QUIT
Syntax: QUIT[n]
Action: Terminate the program and leave GFA Basic.
 Returns a two byte integer to the calling routine
 (normally the desktop).

RAD
Syntax: RAD(degrees)
Action: Converts from degrees to radians. (equivalent to
 x*PI/180).
 See also DEG

RAND
Syntax: RAND(y)
Action: Produces a 16 bit random integer in the range 0 to y-
 1. Where y is an integer max value &HFFFF.

RANDOM
Syntax: RANDOM(x)
Action: Returns a random integer between 0 (inclusive) and
 'x' (exclusive).

RANDOMIZE
Syntax: RANDOMIZE [y]
Action: Initialises the random number generator [with the
 value y].

RBOX
Syntax: RBOX x,y,x1,y1
Action: Draws a rectangle with rounded corners from the two
 diagonally opposite corner points 'x,y' and 'x1,y1'
 See also BOX, PBOX, PRBOX.

RCALL
Syntax: RCALL addr,reg%()
Action: Calls an assembler routine (similar to C: or CALL)
 with pre-allocated values in the registers.
 The integer array reg% must have 16 elements and holds
 the values. At the end of the routine, the values are
 also returned in the array.
 Data registers d0 to d7 --->reg%(0) to reg%(7)
 Address registers a0 to a6 --->reg%(8) to reg%(14)
 User Stack Pointer (a7) --->reg%(15)

RC_COPY
Syntax: RC_COPY s_adr,sx,sy,sw,sh TO d_adr,dx,dy[,m]
Action: Copies rectangular screen sections between areas of
 memory.
 s_adr source address
 sx,sy top left corner of source rectangle
 sw,sh width & height " " "
 d_adr destination address
 dx,dy destination x and y coordinates
 m optional mode (see PUT for modes).

RC_INTERSECT
Syntax: y%=RC_INTERSECT(x1,y1,w1,h1,x2,y2,w2,h2)
Action: Detects whether two rectangles overlap. The rectangles
 being specified by the coordinates of the top left
 corner(x,y) and their width & height (w,h).
 Returns TRUE (-1) if they do overlap and the variables
 x2,y2,w2,h2 contain the size of the common rectangle.

READ
Syntax: READ var[,var1, ...]
Action: Reads values from a DATA command and assigns them to a
 variable 'var'. Reading is taken from the last point a
 RESTORE was done (if any).

RECALL
Syntax: RECALL #i,x$(),n[TO m],x
Action: Inputs n lines from a text file to the array x$(). If
 n=-1 all available lines are read. x contains the
 number of lines read.

RECORD

RELSEEK
Syntax: RELSEEK [#]N,X
Action: Moves tINT
 '
 QSORT x%(-),11
 PRINT "Descending sort: ";
 FOR i%=0 TO 10
 PRINT x%(i%);" ";
 NEXT i%
 PRINT

QUIT
Syntax: QUIT[n]
Action: Terminate the program and leave GFA Basic.
 Returns a two byte integer to the calling routine
 (normally the desktop).

RAD
Syntax: RAD(degrees)
Action: Converts from degrees to radians. (equivalent to
 x*PI/180).
 See also DEG

RAND
Syntax: RAND(y)
Action: Produces a 16 bit random integer in the range 0 to y-
 1. Where y is an integer max value &HFFFF.

RANDOM
Syntax: RANDOM(x)
Action: Returns a random integer between 0 (inclusive) and
 'x' (exclusive).

RANDOMIZE
Syntax: RANDOMIZE [y]
Action: Initialises the random number generator [with the
 value y].

RBOX
Syntax: RBOX x,y,x1,y1
Action: Draws a rectangle with rounded corners from the two
 diagonally opposite corner points 'x,y' and 'x1,y1'
 See also BOX, PBOX, PRBOX.

RCALL
Syntax: RCALL addr,reg%()
Action: Calls an assembler routine (similar to C: or CALL)
 with pre-allocated values in the registers.
 The integer array reg% must have 16 elements and holds
 the values. At the end of the routine, the values are
 also returned in the array.
 Data registers d0 to d7 --->reg%(0) to reg%(7)
 Address registers a0 to a6 --->reg%(8) to reg%(14)
 User Stack Pointer (a7) --->reg%(15)

RC_COPY
Syntax: RC_COPY s_adr,sx,sy,sw,sh TO d_adr,dx,dy[,m]
Action: Copies rectangular screen sections between areas of
 memory.
 s_adr source address
 sx,sy top left corner of source rectangle
 sw,sh width & height " " "
 d_adr destination address
 dx,dy destination x and y coordinates
 m optional mode (see PUT for modes).

RC_INTERSECT
Syntax: y%=RC_INTERSECT(x1,y1,w1,h1,x2,y2,w2,h2)
Action: Detects whether two rectangles overlap. The rectangles
 being specified by the coordinates of the top left
 corner(x,y) and their width & height (w,h).
 Returns TRUE (-1) if they do overlap and the variables
 x2,y2,w2,h2 contain the size of the common rectangle.

READ
Syntax: READ var[,var1, ...]
Action: Reads values from a DATA command and assigns them to a
 variable 'var'. Reading is taken from the last point a
 RESTORE was done (if any).

RECALL
Syntax: RECALL #i,x$(),n[TO m],x
Action: Inputs n lines from a text file to the array x$(). If
 n=-1 all available lines are read. x contains the
 number of lines read.
 The optional parameter TO will read in the start of
 the file to the named elements of the array.
 eg.
 DIM a$(20)
 FOR n=0 TO 19
 a$(n)="Line # "+STR$(n)
 NEXT n
 OPEN "o",#1,"test"
 STORE #1,a$()
 CLOSE
 DIM b$(20)
 OPEN "i",#1,"test"
 RECALL #1,b$(),12 TO 15,x
 'or RECALL #1,b$(),-1,x
 CLOSE
 PRINT x
 FOR n=0 TO 20
 PRINT b$(n)
 NEXT n

See Also: STORE

RECORD
Syntax: RECORD #n,r
Action: Sets the number of the next record to br read or stored
 with GET or PUT.

Example: RECORD #1,15

See Also: FIELD,GET#, PUT#, SEEK

RELSEEK
Syntax: RELSEEK [#]n,x

Action: Moves the random access file pointer forward (+X) or
 backwards (-X) 'X' number of bytes.

REM
Syntax: REM remark
Action: Whatever follows a REM coomand on a particular line
 is ignored by Basic. ' is synonoymous with REM.

Example: REM This is a comment

RENAME
Syntax: RENAME old$ AS new$
Action: Renames a file.

REPEAT...UNTIL
Syntax: REPEAT
 UNTIL end
Action: Creates a pre-defined loop. The section of the program
 between repeat and until is repeated continuously until
 the condition is fulfilled.

Example: REPEAT
 UNTIL MOUSEK 'Waits for mouse key to be pressed.

RESERVE
Syntax: RESERVE n
Action: Increases or decreases the memory used by basic
 'n' is a numeric expression which determines how big
 FRE(0) should be after this command. (see HIMEM, EXEC)

Example: RESERVE 2560
 EXEC 0,"\PROGRAM.PRG","",""
 RESERVE

 2560 bytes are reserved and PROGRAM.PRG is loaded and
 started. After running the reserved space is restored.

 Memory can be reserved in blocks of 256 bytes.
 If n is negative then the whole of the free memory is
 reserved.

RESTORE
Syntax: RESTORE [label]
Action: Positions the data pointer for READ.
 Places the data pointer at the beginning, or behind the
 label names 'label'
 'label' can be any list of characters and can contain
 digits, letters, underscore and full stops. Unlike
 other variable names it can begin with a digit.

RESUME
Syntax: RESUME RESUME NEXT RESUME label
Action: The RESUME command is only meaningful with error capture

 (ON ERROR GOSUB) where it allows a reaction to an error.

 RESUME repeats the erroneous command.
 RESUME NEXT resumes program execution after an incorrect
 command.
 RESUME 'label' branches to the 'label'.
 If a fatal error occurs only RESUME 'label' is possible

Example: ON ERROR GOSUB error_trap
 ERROR 5
 PRINT "and again..."
 ERROR 5
 PRINT "is not reached."
 '
 PROCEDURE error_trap
 PRINT "OK, error intercepted"
 RESUME NEXT
 RETURN

RETURN
Syntax: RETURN
Action: Terminates a sub-routine

Syntax: RETURN x
Action: If the command RETURN is reached during program ececution
 and is within a FUNCTION...ENDFUNC execution, then the
 value given after it is returned.

RIGHT$
Syntax: RIGHT$(string[,n])
Action: Returns the last characters or 'n' number of characters
 (from the right) of a character string 'string'
Example: PRINT RIGHT$"Hello GFA",3) 'PRINTS GFA

RINSTR
Syntax: RINSTR(a$,b$)
 RINSTR(a$,b$,[x])
 RINSTR([x],a$,b$)
Action: Operates in same way as INSTR except that search begins at
 the right end of a$.

RMDIR
Syntax: RMDIR "directory name"
Action: Deletes empty directories

RND
Syntax: RND [(x)]
Action: Returns a random number between 0 and 1

 The optional parameter (x) is disregarded, and returns
 a random number between 0 (inclusive) and 1 (exclusive)

ROL
Syntax: ROL(x,y)
 ROL&(x,y)
 ROL|(x,y)
Action: Rotates a bit pattern left.

ROR
Syntax: ROR(x,y)
 ROR&(x,y)
 ROR|(x,y)
Action: Rotates a bit pattern right.

ROUND
Syntax: ROUND(x[,n])
Action: Rounds off the numeric expression x.

Example: y=ROUND(-1.2)
 PRINT y,ROUND(1.7)

RSET
Syntax: RSET a$=b$
Action: Moves a string expression, right justified to a string.
See Also: LSET,MID$

The following commands are part of the Resource Library. These
routines provide the creation of a graphical user interface. The full
descriptions of these functions are beyond the scope of these
abreviated manual. A full description is contained within the full
GFA-BASIC Reference manual and also the GFA-BASIC Software Development
Book.

RSRC_FREE
Syntax: ~RSRC_FREE(0)
Action: This function releases the memory space reserved by
 RSRC_LOAD.
 Returns 0 if an error.

RSRC_GADDR
Syntax: ~RSRC_GADDR(type,index,addr)
Action: This function determines the address of a resource
 structure after it has been loaded with RSRC_LOAD.
 Depending on the version of GEM, this function may only
 work for Object trees and Alert boxes.
 Returns 0 if an error.

 Type:0 OBJECT TREE
 1 OBJECT
 2 TEDINFO
 3 ICONBLK
 4 BITBLK
 5 STRING
 6 image data
 7 obspec
 8 te_ptext
 9 te_ptmplt
 10 te_pvalid

 11 ib_pmask
 12 ib_pdata
 13 pb_ptext
 14 bi_pdata
 15 ad_frstr
 16 ad_frimg

 Index: The number of the object whose address is
 required, counting objects of that type one by one
 from the beginning of the resource file.

 addr: The required address.

Example: ~RSRC_GADDR(0,0,TREE%)

RSRC_LOAD
Syntax: RSRC_LOAD(name$)
Action: This function reserves memory and loads a resource file.
 Then internal pointers are set and the co-ordinates of
 characters converted into pixel format.

Example: ~RSRC_LOAD("TEST.RSC")

RSRC_OBFIX
Syntax: RSRC_OBFIX(tree,obj)
Action: This function converts the coordinates of an object within
 a tree, from character coordinates to pixel coordinates,
 taking into account the current screen resolution. It is
 automatically called by RSRC_LOAD, but must be used if the
 object is created direct in memory by POKE.

 tree: address of the object tree
 obj: object number

RSRC_SADDR
Syntax: RSRC_SADDR(type,index,addr)
Action: This function sets the address of an object.
 Returns 0 if an error.

 type: type of structure
 index: the number of the object
 addr address

RUN
Syntax: RUN(a$)
Action: Runs the program in memory, or if a file name is supplied
 will load and then run the appropriate program.

Example: RUN "A:\PROGRAM.GFA"

SAVE
PSAVE

Syntax: SAVE a$
 PSAVE a$
Action: Saves a program file (psave is with list protection)
 'file name' is the name of the program.
 Programs which are saved with psave are not listed but
 run straight after the command 'load' is given.

SEEK
Syntax: SEEK [#]n,x
Action: Sets the file pointer on the byte number 'x' of file #n
 'n' is an integer expression between 0 and 99 which
 refers to the channel number. 'x' has a value (total)
 either greater or smaller than the length of the file
 addressed.

SCRP_READ
Syntax: SCRP_READ(path$)
Action: This function reads data, left there by another program,
 from a small internal buffer, thus allowing communication
 between GEM programs. Returns 0 if an error.
Example: SCRP_READ(a$)
See Also: SCRP_WRITE

SCRP_WRITE
Syntax: SCRP_WRITE(path$)
Action: This function writes data, into a small internal buffer,
 thus allowing communication between GEM programs.
Example: SCRP_WRITE("A:\PROGRAM.TXT")
See Also: SCRP_READ

SDPOKE
Syntax: SDPOKE x,y
Action: Allows DPOKE to operate in supervisor mode, so that
 protected address (0 to 2047) can be modified.

SEEK
Syntax: SEEK #n,pos
Action: Absolute positioning of data pointer within file. This
 allows the realisation of indexed sequential file access.
 The numerical expression n contains the channel number of
 the file.

SELECT
Syntax: SELECT x
 CASE y [TO z] or CASE y [,z,...]
 CASE TO y
 CASE y TO
 DEFAULT
 ENDSELECT
 CONT
Action: A conditional command which enables execution of specified
 program segments depending on an integer.

 The maximum of a CASE is 4 characters (eg CASE "A,B,C,D"

 The CONT command provides a method of jumping over a CASE
 or DEFAULT command.

Example: REPEAT
 a%=ASC(INKEY$)
 SELECT a%
 CASE 65 TO 90
 PRINT "CAPITAL LETTER"
 CASE 97 TO 122
 PRINT "LOWER CASE LETTER"
 DEFAULT
 PRINT "NOT CAPITAL OR LOWER CASE"
 ENDSELECT
 UNTIL a%=27

SETCOLOR
Syntax: SETCOLOR i,r,g,b
 SETCOLOR i,n
Action: Defines the colours red, green and blue for the colour
 register 'i'.
 'r,g,b' are the levels of the three primary colours
 from 0 to 7.
 Another way of defining colours is to use the value 'n'
 where n=r*256+g*16+b
See Also: COLOR,VSETCOLOR

SETDRAW See DRAW command.

SETMOUSE
Syntax: SETMOUSE mx,my,[,mk]
Action: The SETMOUSE command permits the positioning of the mouse
 cursor under program control. Tje optional parameter mk can
 simulate the mouse button being pressed or released.

Example: FOR i%=0 TO 300
 HIDEM
 SETMOUSE i%,i%
 PLOT MOUSEX,MOUSEY
 SHOWM
 PAUSE 2
 NEXT i%

SETTIME
Syntax: SETTIME time$,date$
Action: Sets the time and the date.

 time$ is a string expression which contains the
 time. hours, minutes and second can be displayed. The
 colons are optional as two digits have to be entered.
 The seconds can also be left out.

 date$ is a character string expression for the
 date. It must always contain: day, month and year,
 each separated by a full stop.

Example: PRINT DATE$,TIME$
 SETTIME "17:30:30","27.10.1952"
 PRINT DATE$,TIME$

SGET
Syntax: SGET screen$
Action: Fast reading of the entire screen area into a string
 variable.
Example: PCIRCLE 100,100,50
 SGET b$
 ~INP(2)
 CLS
 ~INP(2)
 SPUT b$
See Also: SPUT, GET, PUT and BMOVE

SGN
Syntax: SGN(x)
Action: Ascertains whether 'x' is positive, negative or 0
 'x' can be any numeric expression. SGN(x) is the
 mathematic sign function.

The following commands are part of the Shell Library and enable
an application to call another, preserving both the original
application and its environment.
The full descriptions of these functions are beyond the scope of these
abreviated manual. A full description is contained within the full
GFA-BASIC Reference manual.

SHEL_ENVRN
Syntax: SHEL_ENVRN(addr,search$)
Action: This function determines the values of variables in the GEM
 environment.
 Returns 1.

 search$: The string to be sought
 addr: address of the byte following the string

Example: PRINT SHEL_ENVRN(a%,"PATH")
 PRINT CHAR{a%-4}

 ' Displays: PATH=A:\

SHEL_FIND
Syntax: SHEL_FIND(paths$)
Action: This function searches for a file and supplies the full
 file specification. First the path on the current drive is
 searched, then the root directory of drive A:.

 Returns 0 if file not found, or 1 if found.

 On entry:
 path$: String contains sought after filename.

 On exit:
 path$: Contains the full file specification if the file
 was found, otherwise it is unchanged.

SHEL_GET
Syntax: SHEL_GET(num,x$)
Action: This function reads data from the GEMDOS environmental
 string buffer (into which the file DESKTOP.INF is read on
 start up).

 Returns 0 if an error.

 num: number of bytes to be read
 x$: string to contain data

Example: SHEL_GET(500,x$)
 PRINT x$

SHEL_PUT
Syntax: SHEL_PUT(len,x$)
Action: This function writes data into the GEMDOS environmental
 string buffer.

 Returns 0 if an error.

 x$: String containing the data to be written
 len: number of bytes to be written

Example: 'Register GFA-BASIC
 ~SHEL_GET(2000,a$)
 q%=INSTR(a$,CHR$(26))
 IF q%
 a$=LEFT$(a$,q%-1)
 IF INSTR(a$,"GFABASIC.PRG")=0
 a$=s$+"#G 03 04 A:\GFABASIC.PRG@*.GFA
 +MKI$(&HDOA)+CHR$(26)
 ~SHEL_PUT(LEN(a$),a$)
 ENDIF
 ENDIF

 ' Registers that all .GFA files cause GFABASIC.PRG to be
 loaded when clicked on.

SHEL_READ
Syntax: SHEL_READ(cmd_string$,tail_string$)
Action: This function allows the program to identify the command by
 which it was invoked and supplies the name, eg
 GFABASIC.PRG, and the command line if any.

 cmd_string$ string variable to contain the command
 line.

 tail_string$ string variable to contain name.

SHEL_WRITE
Syntax: SHEL_WRITE(prg,grf.gem.cmd$,nam$)
Action: This function informs the AES that another application is
 to be started after the current one has terminated. In
 contrast to p_exec (GEMDOS 75), however the current program
 does not remain in memory.

 prg: 0 Back to desktop
 1 Load new program
 grf: 0 TOS program
 1 Graphic application
 gem: 0 not a GEM application
 1 GEM application
 cmd$ command line string
 nam$ name of next application

Example: ~SHEL_WRITE(1,1,1,"","GFABASIC.PRG")

SHL
Syntax: SHL(x,y)
 SHL&(x,y)
 SHL|(x,y)
Action: Shifts a bit pattern left

SHOWM
Syntax: SHOWM
Action: Makes the mouse pointer appear.
See Also: HIDEM

SHR
Syntax: SHR(x,y)
 SHR&(x,y)
 SHR|(x,y)
Action: Shifts a bit pattern right

SIN
Syntax: SIN(x)
Action: Returns the sine value of 'x'

SINGLE{}
Syntax: SINGLE{x}
Action: Reads/writes a 4 byte floating point variable in IEEE
 single precision format.

SINQ
Syntax: SINQ(degrees)
Action: Returns the extrapolated sine of a numeric expression.

SLPOKE
Syntax: SLPOKE x,y
Action: Allows LPOKE to operate in supervisor mode, so that
 protected address (0 to 2047) can be modified.

SOUND
Syntax: SOUND chn,vol,note,octave[,dur]
 SOUND chn,vol,note,#period[,dur]
Action: GENERATES MUSICAL NOTES
 'chn' is a 1, 2, or 3 and selects the sound channel.
 'vol' selects the volume.
 'note' is a value of 1 to 12 and selects notes:
 1=C,
 2=C#
 3=D
 4=D#
 5=E
 6=F
 7=F#
 8=G
 9=G#
 10=A
 11=A#
 12=B
 'octave' is between 1 and 8, and determines octave.
 'dur' is the time in 1/50ths of a second that GFA Basic
 has to wait before execution of the next command.
 A further possibility to choose the pitch is to enter
 'period' prefixed by '#' instead of 'note' and 'octave'.
 The period can be calculated from the
 frequency with:

 Period = TRUNC(125000/frequency +0.5)

SPACE$
Syntax: SPACE$(x)
Action: Creates a character string containing 'x' spaces.

SPC
Syntax: SPC(n)
Action: Produces 'n' spaces in a print command

SPOKE SDPOKE SLPOKE
Syntax: SPOKE x,n SDPOKE x, SLPOKE x,n
Action: Writes 1, 2 or 4 bytes into an area of memory which
 begins with the address 'x'

SPRITE
Syntax: SPRITE A$[,x,y]
Action: Puts the sprite defined in a$ at (X,Y) or, if no
 coordinates are given, deletes it.
 A$ = MKI$(X POSITION)
 + MKI$(Y POSITION)
 + MKI$(0=NORMAL OR 1=XOR MODE)

 + MKI$(SCREEN COLOUR MOSTLY 0)
 + MKI$(SPRITE COLOUR MOSTLY 1)
 + BIT PATTERN OF SCREEN AND SPRITE

 Unlike defmouse, the bit patterns for screen and sprite
 are not stored in separate blocks but in alternate
 words (16 bits).
 If the same sprite is put onto the screen in another
 position then the first sprite is deleted.

SPUT
Syntax: SPUT var
Action: Fast copying of a 32000 byte string into the screen
 area.
See Also: SGET, PUT, GET and BMOVE

SQR
Syntax: SQR(X)
Action: Calculates the square root of 'X'.

SSORT
Syntax: SSORT a(s) {OFFSET o][WITH i()][,n[,j%()]]
 SSORT x$(s) WITH i() [,n[,j%{}]]
Action: Sorts the elements in an array by its size using the Shell-
 Metzner method.

 a() array or string array
 i() integer array
 j% 4byte integer array
 x$() string array
 s + or - or no sign

STE?
Syntax: STE?
Action: Returns -1 for STE otherwise 0

STICK
Syntax: STICK m
 STICK(p)
Action: The function STICK(p) returns the position of a joystick.
 STICK 0 causes port 0 to supply mouse information.
 STICK 1 causes port 1 to read the joystick.

Example: STICK 1
 REPEAT
 direction%=STICK(0)
 fire%=STRIG(0)
 SELECT direction%
 CASE 4
 PRINT "LEFT"
 CASE 8
 PRINT "RIGHT"
 CASE 2

 PRINT "DOWN"
 CASE 1
 PRINT "UP"
 ENDSELECT
 UNTIL fire!
 WHILE STRIG(0)
 WEND

STOP
Syntax: STOP
Action: Stops execution of a program.
 Unlike the END command it does not close any files and
 by typing CONT the program will resume from the line
 following the STOP command.

STORE
Syntax: STORE #i,x$()[,n[TO m]]
Action: Fast save of a string array as a text file. The instruction
 STORE is used for sending the contents of an array to a
 file or data channel (elements seperated by CR/LF).

See Also: RECALL

STR $
Syntax: STR$(X)
Action: Transforms the value 'X' into a character string.

STRING$
Syntax: STRING$(N,string) OR STRING$(N,C)
Action: Produces a string formed by repeating 'string' or
 CHR$(C) 'N' times. 'N' is a number from 0 to 32767.

SUB
Syntax: SUB VAR,N
Action: Deducts 'N' from 'VAR'. Same as VAR=VAR-N but executes
 almost twice as fast.
Example: x=57
 SUB x,3*5
 PRINT x 'PRINTS 42

SUB()
Syntax: SUB(x,y)
Action: Corresponds to x-y

Example: PRINT SUB(5^3,4*20+3) 'PRINTS 42

SUCC()
Syntax: SUCC(n)
Action: Determines the next higher number.

See Also: PRED()

SWAP
Syntax: SWAP var1,var2
Action: Exchanges the values of 'var1' and 'var2'.
 The variables must be of the same type.
 When swapping array fields the dimensions are also swap
 ped.

SWAP()
Syntax: SWAP(n)
Action: Swaps the high and low words of a varaible.

SYSTEM
Syntax: SYSTEM
Action: Causes a return to the desktop, same as quit.

TAB
Syntax: TAB(n)
Action: Sets the tabulator to the nth column.
 Tab can only be used in conjunction with the print
 command.
 If the current position is already past 'N' then the
 tab function is set for the next line.

TAN
Syntax: TAN(X)
Action: Returns the tangent of 'X' (X is the angle in radians).

TEXT
Syntax: TEXT X,Y, [L,]string
Action: Puts a text onto the screen at graphics coordinates
 'X,Y'. The graphics can first be defined by using
 the command DEFTEXT.

TIME$
Syntax: TIME$
Action: Returns the system time as a string.
 Format: hh:mm:ss and is updated every two seconds.

Example: PRINT TIME$

TIME$=
Syntax: TIME$=a$
Action: The time can be set.

Example: TIME$="20:15:30"

TIMER
Syntax: t%=TIMER
Action: TIMER suuplies the elapsed time in 1/200 seconds since the
 system was started.

Example: t%=TIMER
 FOR i%=1 TO 2500
 NEXT i%
 PRINT (TIMER-t%)/200;" Seconds"

TITLEW
Syntax: TITLEW n,"title"
Action: Gives the window number 'n', the new title 'title'.

TOPW
Syntax: TOPW #1
Action: Activates the windows number n.

TOUCH
Syntax: TOUCH[#]n
Action: Updates the date and time stamps od a file, giving it the
 current system time and date.

Example OPEN "u",#1,"TEST.TXT"
 TOUCH #1
 CLOSE #1

TRACE$
Syntax: TRACE$
Action: The variable TRACE$ contains the command which is next to
 be processed.

See Also: TRON,TROFF

TRIM$
Syntax: TRIM$(a$)
Action: Removes spaces at the beginning of a string expression.

TROFF
Syntax: TROFF
Action: Switches the trace function off.

TRON
Syntax: TRON
Action: Switches the trace function on. This causes each command to
 be listed on the screen.

TRON#
Syntax: TRON #1
Action: Switches the trace function on. This causes each command to
 be listed to the relevant channel number.

TRONproc
Syntax: TRON tr_proc
Action: A procedure can be specified which is called before the
 execution of each command.

TRUE
Syntax: TRUE
Action: Constant 0. This is simply another way of expressing
 the value of a condition when it is true and is equal
 to zero. (see also FALSE).

TRUNC
Syntax: TRUNC(X)
Action: Returns the integer portion of 'X'.

TT?
Syntax: TT?
Action: Returns -1 for 68020 or 68030 processeor, otherwise 0.

TYPE
Syntax: TYPE(ptr)
Action: Determines the type of the variable at which a pointer
 is set.

 'ptr' is an integer expression (usually *var).
 TYPE(ptr) returns a code according to the type of
 variable to which 'ptr' is pointing.

 0=var
 1=var$
 2=var%
 3=var!
 4=var()
 5=var$()
 6=var%()
 7=var!().

 On errors -1 is returned.

UPPER$
Syntax: A$="basic"
 PRINT UPPER$(A$)
 PRINT UPPER$("1a")
Action: Transforms all lower case letters of a string to upper
 case. Any non letter characters are left unchanged.

V:
Syntax: V:x
Action: Returns the address of a variable or strings or elements of
 an array.

VAL
Syntax: VAL(X$)
Action: Transforms 'X$' into a number, as far as possible.
 In the case of a purely alphabetical string the value
 0 is returned.

VAL?
Syntax: VAL?(X$)
Action: Determines the number of characters starting at the
 beginning of a string that can be converted into a
 numerical value with VAL.

VAR
Syntax: name([a,b,...] VAR x,y..a(),b(),...)
Action: Declaration part of the parameter list for a PROCEDURE or
 FUNCTION.

Example: sum(13,12,a)
 sum(7,9,b)
 PRINT a,b
 '
 PROCEDURE sum(x,y,VAR z)
 z=x+y
 RETURN

VARIAT()
Syntax: VARIAT(n,k)
Action: Returns the number of permutations of n elements to the kth
 order without repitition.

Example: PRINT VARIAT(6,2) 'prints 30

See Also: FACT(), COMBIN()

VARPTR
Syntax: VAPTR(var)
Action: Determines the address or starting address of a
 variable 'var'.

VDIBASE
Syntax: VDIBASE
Action: Dangerous pokes!
 Determines the address above the area used by basic
 and the required tables and variables.
 This is the point from which this version of gem keeps
 parameters for the vdi (text style, clipping etc.).
 By use of peek and poke in this area, various effects
 (and nasty crashes!) can be obtained.

VDISYS
Syntax: VDISYS[opcode [,c_int,c_pts[,subopc]]]
Action: The VDI function with function code opcode is called. If
 opcode is not specified, then the function code must, like
 other parameters, be placed in the control block with
 DPOKE.

 The depth of this command is betond the scope of this
 abbreviated manual.

VOID
Syntax: VOID exp
Action: This command performs a calculation and forgets the
 result. Sounds silly but there are occasions when this
 command is required, eg. forced garbage collection
 (fre(0)), waiting for a keystroke (inp(2)), or calling
 various bios, xbios, gemdos or c: routines which have
 no parameters.

VQT_EXTENT
Syntax: VQT_EXTENT(text$[,x1,y1,x2,y2,x3,y3,x4,y4])
Action: Returns the corner coordinates of a rectangle which will
 surround the text in text$. The coordinates can either be
 found in the variables x1,y1 to x4,y4, or in PTSOUT(7). The
 corner pointers are numbered in a clockwise direction.

Example: INPUT text$
 CLS
 ATEXT 100,25,2,text$
 ~VQT_EXTENT(text$,x1,y1,x2,y2,x3,y3,x4,y4)
 BOX x4+100,y4+25,x2+00,y2+25

VQT_NAME
Syntax: VQT_NAME(i,font_name$)
Action: Supplies the handle of the font with the indentification
 number i and places the name of the loaded character set
 into the string variable font_name$.

VSETCOLOR
Syntax: VSETCOLOR colour,red,green,blue
 VSETCOLOR colour,composite
Action: Due to an error in TOS, SETCOLOR does not correspond to the
 registers used by COLOR. VSETCOLOR is used to overcome this
 problem.

 Low Resolution
 SETCOLOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 VSETCOLOR 0 2 3 6 4 7 5 8 9 10 11 14 12 15 13 1

 Medium Resolution
 SETCOLOR 0 1 2 3
 VSETCOLOR 0 2 3 1

 High Resolution
 SETCOLOR 0,even = VSETCOLOR 0,0
 SETCOLOR 0,odd = VSETCOLOR 0.&H777

 The term composite is calculated the same way as with
 SETCOLOR: ie rgb=(r*256)+(g*16)+b

VST_LOAD_FONTS
Syntax: VST_LOAD_FONTS(x)
Action: Loads the additional character sets specified in
 ASSIGN.SYS, and the number of loaded fonts is returned.

Example: RESERVE 25600
 num_fonts%=VST_LOAD_FONTS(0)
 face%=VQT_NAME(num_fonts%,fonts$)
 FOR i%=1 to num_fonts%
 DEFTEXT,,,,face%
 TEXT 80,80,"This is the "+font$+" font."
 ~INP(2)
 NEXT i%
 ~VST_UNLOAD_FONTS(0)
 RESERVE

VST_UNLOAD_FONTS
Syntax: VST_UNLOAD_FONTS(x)
Action: Removes the character set previously loaded with
 VST_LOAD_FONTS from memory.

VSYNC
Syntax: VSYNC
Action: Enables synchronization with the screen by waiting
 until the next vertical sync pulse is received - helps
 avoid flickering of the screen during animation when using
 GET and PUT.

Example: t%=TIMER
 FOR i%=1 TO 100
 VSYNC

 NEXT i%
 PRINT SUB(TIMER,t%)/200
 ' PRINTS the time for 100 scans of screen.

VTAB
Syntax: VTAB line
Action: VTAB positions the cursor to the specified column or line
 number . Note that the cursor columns and lines are counted
 from 1, not 0.

See Also: HTAB, PRINT AT, TAB

The following VDI Workstation routines and functions are only
available if GDOS has been booted and a valid ASSIGN.SYS file is
available. In depth documentation on the VDI routines are beyond the
scope of this abbreviated manual. Further information can be found in
the full GFA-BASIC Interpreter Manual or Software Development Book.

V_CLRWK
Syntax: V_CLRWRK()
Action: This function clears the output buffer. For example the
 screen or the printer buffer is cleared.

V_CLSVWK
Syntax: V_CLSVWK(id)
Action: Closes a virtual workstation opened with V_OPNVWK.

V_CLSWK
Syntax: V_CLSWK()
Action: Closes the current workstation opened with V_OPNWK().

V_OPNVWK
Syntax: V_OPNVWK(id,1,1,1,1,1,1,1,1,1,2)
Action: Opens a virtual screen driver and supplies the handle for
 the specified device id.

V_OPNWK
Syntax: V_OPNWK(id)
Action: Supplies the handle for the specified device id.

V_UPDWK
Syntax: V_UPDWK()
Action: Sends buffered graphic instructions to the attached device.

V~H
Syntax: V~H

Action: Returns the internal VDI handle of GFA-BASIC.

 V~H=x 'Sets internal VDI handle

 V~H=-1 'Sets VDI handle to value from V_OPNVWK()

W:
Syntax: W:x
Action: Allows passing of numerical expressions to the operating
 system and C routines as a word (2-byte).

See Also: L:

WAVE
Syntax: WAVE voice,env,form,per,del
Action: Produces noises from the three sound channels.
 WAVE 0,0 switches off all sound channels.

 voice: Any channel or combination of channels may be
 activated simultaneously. The value of voice is
 256 * by the period.

 1 Channel 1
 2 Channel 2
 4 Channel 3
 8 Noise (Channel 1)
 16 Noise (Channel 2)
 32 Noise (Channel 3)

 env: Specifies the channels for which the wnvelope is
 to be active.

 1 Channel 1
 2 Channel 2
 3 Channel 3

 form: Envelope shape

 0 - 3 As 9
 4 - 7 As 15
 8 Falling sawtooth
 9 Falling linear
 10 Triangle falling
 11 Falling linear, then to max
 12 Rising sawtooth
 13 Rising linear and holding
 14 Triangle, then rising
 15 Linear rising, then to zero

 per: Period of the waveform multiplied by 125000.

 del: Delay in 1/59ths second before the next GFA-BASIC
 command is executed.

Example: SOUND 1,15,1,4,20
 SOUND 2,15,4,4,20
 SOUND 3,15,8,4,20
 WAVE 7,7,0,65535,300
 ' A tone is generated from each channel then modulated by

 ' WAVE.

See Also: SOUND

WHILE....WEND
Syntax: WHILE condition
 WEND
Action: Creates a conditional loop between while and wend until
 the 'condition' is fulfilled. This is checked at the
 beginning of the loop and so it is possible that the
 loop is never executed.

The following functions are all functions of the Window Library

WINDTAB
Syntax: WINTAB
 WINTAB(i,j)
Action: Gives the address of the Window Parameter Table. This table
 contains the data that determines the appearance of a
 window.

 Window Parameter Table:

 Offset
 0 Handle of Window 1
 2 Attributes for Window 1
 4 x coordinates of Window 1
 6 y coordinates of Window 1
 8 Width of Window 1
 10 Height of Window 1
 12-22 Parameters for Window 2
 24-34 Parameters for Window 3
 36-46 Parameters for Window 4
 48 -1
 50 0
 52-58 Coordinates and size of Desktop
 60-63 Coordinates of the joint of the four windows
 64-65 Origin for graphic instructions (CLIP OFFSET)

 Window Attibute element:

 Bit
 0 Window Title
 1 Close box
 2 Full box
 3 Move box
 4 Information line
 5 Sizing box
 6 Up arrow
 7 Down arrow
 8 Vertical slider
 9 Left arrow
 10 Right arrow
 11 Horizontal slider

Example: OPEN #1,100,120,200,70,&HFFF

 ' corresponds to:
 DPOKE WINTAB+2,&HFFF
 DPOKE WINTAB+4,100
 DPOKE WINTAB+6,120
 DPOKE WINTAB+8,200
 DPOKE WINTAB+10,70
 OPENW 1
 ' or
 WINTAB(1,1)=&HFFF
 WINTAB(1,2)=100
 WINTAB(1,3)=120
 WINTAB(1,4)=200
 WINTAB(1,5)=70
 OPENw 1

WIND_CALC
Syntax: WIND_CALC(w_type,attr,ix,iy,iw,ih,ox,oy,ow,oh)
Action: This function computes the total size of the work area from
 the size of the window.
 Returns 0 if an error.

 w_type: 0 Compute total size
 1 Compute work area size

 attr: Bit
 0 Title bar with name
 1 Close box
 2 Full size box
 3 Move bar
 4 Info line
 5 Size box
 6 Up arrow
 7 Down arrow
 8 Vertical slider
 9 Left arrow
 10 Right arrow
 11 Horizontal slider

 ix,iy top left coorinates
 iw,ih width and height

 ox,oy Calculated top left coordinates
 ow,oh Calculated width and height

WIND_CLOSE
Syntax: WIND_CLOSE(handle)
Action: Closes the specified window.

WIND_CREATE
Syntax: WIND_CREATE(attr,wx,wy.ww.wh)
Action: Allocates a new window, specifying the attributes and
 maximum size. The handle of the window is returned.

 attr: Bit
 0 Title bar with name
 1 Close box
 2 Full size box
 3 Move bar

 4 Info line
 5 Size box
 6 Up arrow
 7 Down arrow
 8 Vertical slider
 9 Left arrow
 10 Right arrow
 11 Horizontal slider

 wx Max x position of left edge
 wy Max y position of top edge
 ww Max width of window
 wh Max height of window

WIND_DELETE
Syntax: WIND_DELETE(handle)
Action: Deletes a window allocation and frees reserved memory.

WIND_FIND
Syntax: WIND_FIND(fx,fy)
Action: Determines the id number of a window within which the
 specified coordinates lie.

 fx: x coordinates
 fy: y coordinates

WIND_GET
Syntax: WIND_GET(handle,code,w1,w2,w3,w4)
Action: Supplies information about a window determined by the code.

 handle: Id number of the window

 code: depending upon the code, information is
 supplied in w1,w2,w3,w4.

 code: 4 supplies size of window work area
 w1: x coordinates
 w2: y coordinates
 w3: width
 w4: height

 code: 5 supplies total size of entire window
 including borders

 w1: x coordinates
 w2: y coordinates
 w3: width
 w4: height

 code: 6 supplies total size of previous window

 w1: x coordinates
 w2: y coordinates
 w3: width
 w4: height

 code: 7 supplies the total max size of the
 window.

 w1: x coordinates
 w2: y coordinates
 w3: width
 w4: height

 code: 8 supplies the position of the horizontal
 slider

 w1: 1=far left 1000=far right

 code: 9 supplies the position of the vertical
 slider

 w1: 1=top 1000=bottom

 code: 10 supplies the id number of the top
 (active) window

 w1: id number of active window

 code: 11 supplies the coordinates of the first
 rectangle in the specified rectangle
 list.

 w1: x coordinates
 w2: y coordinates
 w3: width
 w4: height

 code: 12 supplies the coordinates of the next
 rectangle in the specified windows
 rectangles list

 w1: x coordinates
 w2: y coordinates
 w3: width
 w4: height

 code: 13 reserved

 code: 15 supplies the size of the horizontal
 slide bar compared to its max possible

 w1: -1 = minimum size
 1 = small
 1000 = full width

 code: 16 supplies the size of the vertical slide
 bar compared to its max possible

 w1: -1 = minimum size
 1 = small
 1000 = full height

WIND_OPEN
Syntax: WIND_OPEN(handle,wx,wy,ww,wh)
Action: Draws on the screen a window previously created with
 WIND_CREATE.

WIND_SET
Syntax: WIND_SET(handle,code,w1,w2,w3,w4)
Action: Changes the parts of a window according to the specified
 function code.

 code: 1 Sets new windows components as with
 WIND_CREATE.

 w1: new window element

 code: 2 Gives a window a new title

 w1: Hi word
 w2: Low word of address of title string

 code: 3 Specifies a new information line
 w1: Hi word
 w2: Low word of address of information
 string

 code: 5 Sets the window size

 w1: x coordinates
 w2: y coordinates
 w3: width
 w4: height

 code: 8 Positions the horizontal slider

 w1: 1=far left 1000=far right

 code: 9 Positions the vertical slider

 w1: 1=top 1000=bottom

 code: 10 Sets top (active) window

 w1: id number

 code: 14 Sets a new desk top Menu tree

 w1: Low word
 w2: High word of address of new tree
 w3: id number of the first object to be
 drawn

 code: 15 Sets the size of the vertical slide bar

 w1 -1=minimum size
 1= small
 1000 max size

 code: 16 Sets the size of the horizontal slider
 bar

 w1 -1=minimum size
 1= small
 1000 max size

WIND_UPDATE

Syntax: WIND_UPDATE(flag)
Action: Coordinates all functions concerned with screen redraws,
 in particular with drop down menus.

 flag: 0 screen redraw completed
 1 screen redraw starting
 2 application loses mouse control
 3 application takes on mouse control

WORD()
Syntax: WORD(x)
Action: Extends a word to long word length (32 bits) by copying
 bits 15 to bit positions 16 to 31, thus preserving the
 sign.

WORK_OUT()
Syntax: WORK_OUT(x)
Action: Determines the values found in INTOUT(0) to INTOUT(44),
 PTSOUT(0) and PTSOUT(1) after returning from the function
 OPEN_WORKSTATION.

WRITE
Syntax: WRITE [expressions][;]
 WRITE #n [expressions][;]
Action: Stores data in a sequential file to be read with input.
 Unlike the PRINT command the numbers are separated by
 commas and the strings are enclosed in quotes.

WRITE#
Syntax: WRITE#n,expression
Action: Saves data to sequential file, for later reading with
 INPUT#.

Example: OPEN "o",#1,"TEST.DAT"
 WRITE #1,"Version ",3,".6"
 CLOSE #1
 OPEN "i",#1,"TEST.DAT"
 INPUT #1,v1$,v2$,v3$
 CLOSE #1
 PRINT v1$+V2$+v3$

W_HAND
Syntax: W_HAND(#n)
Action: Returns the GEM handle of the window whose channel number
 is n.

Example: OPENW 2
 PRINT W_HAND(#2)
 ~INP(2)
 CLOSE #2

W_INDEX
Syntax: W_INDEX(#hd)

Action: Returns the window number of the specified GEM handle.
 Reverse of W_HAND().

XBIOS

The XBIOS function is used to call XBIOS system routines.

~XBIOS(0,t%,l:p%.l:v%)

 Initialises the mouse handling routine but not compatible
 with GEM.

 t% 0 Switches mouse off
 1 Switches mouse into relative mode
 2 Switches mouse into absolute mode
 4 Mouse in keyboard mode
 p% Address of information structure
 v% Address of the mouse handling routine

r%=XBIOS(2)

 Returns the base address of the physical screen memory.

 r% Address of the physical screen memory

r%=XBIOS(3)

 Returns the address of the logical screen memory when
 writing to the screen.

 r% Address of the logical screen memory

r%=XBIOS(4)

 Returns the current screen resolution

 r% 0 320 x 200
 1 640 x 200
 2 640 x 400

~XBIOS(5,l:l%,l:p%,r%)

 Enables the resolution to be changed from low res and high
 res when using a colour monitor. Can not be used with GEM.

 l% New address of logical screen memory
 p% New address of the physical screen memory
 r% New screen resolution (see XBIOS(4))

~XBIOS(6,L:adr%)

 Allows all colour registers to be reset at one time.

 adr% Address of a table of 16 words, which contains new
 pallete data.

r%=XBIOS(7,n%,c%)

 Sets or gets a colour register.

 r% For c%=-1 the previous specified colour register
 is returned.
 n% Colour register
 c% New colour, at c%=-1 see r%

r%=XBIOS(8,L:b%,L:f%,d%,sec%,t%,side%,n%)

 Reads sectors of a disk

 r% 0 if no error
 b% address of the area from which sectors are read
 f% unused
 d% drive number (0=A, 1=B etc)
 sec% sector number
 t% track number
 side% disk side (0 or 1)
 n% number of sectors to be read

r%=XBIOS(9,L:b%,L:f%,d%,sec%,t%,side%,n%)

 Writes sectors to a disk

 r% 0 if no error
 b% address of the area to which sectors are written
 f% unused
 d% drive number (0=A, 1=B etc)
 sec% sector number
 t% track number
 side% disk side (0 or 1)
 n% number of sectors to be written

r%=XBIOS(10,L:b%,L:f%,d%,sec%,t%,side%,i%,L:m%,v%)

 A trace of the disk formats

 r% 0 if no error
 b% address of an area for intermediate memory
 f% unused
 d% drive number (0=A, 1=B etc)
 sec% sectors per track
 t% track number to be formatted
 side% disk side (0 or 1)
 i% Interleave factor (normaaly 1)
 m% Magic number &H87654321
 v% value in sectors of format (normally &HE5E5

~XBIOS(12,n%,L:adr%)

 Outputs the contents of a block of memory to MIDI.

 n% number of bytes -1
 adr% address of the source storage area

~XBIOS(13,n%,L:adr%)

 Sets the MFP interrupt vector on the ST. This can only be
 used from assembly language or C and is not available from
 GFA-BASIC.

 n% Interrupt number
 adr% new address of the interrupt

r%=XBIOS(14,d%)

 Returns the address of the I/O table used by the serial
 interface.

 r% Address of the data buffer for the serial I/O
 table
 d% 0: RS232
 1: IKBD
 2: MIDI

~XBIOS(15,b%,h%,ucr%,rsr%,tsr%,scr%)

 Configures the serial interface. The parameters remain
 unchanged with a value of -1.

 b% Baud rate
 h% hand shake mode
 0: no handshake
 1: XON/XOFF
 2: RTS/CTS
 3: both
 ucr% USART control register of MFP
 rsr% receiver status register of MFP
 tsr% transmitter status register of MFP
 scr% synchronous character register of MFP

r%=XBIOS(16,L:us%,L:sh%,L:cl%)

 Changes the keyboard translation tables.

 r% address of the KEYTAB structure
 us% address of the table for keys without shift
 sh% address of the table for keys with shift
 cl% address of the table for keys with Cap-lock

r%=XBIOS(17)

 Returns a random number

 r% number with 24 bit accuracy (0 to 16777215)

~XBIOS(18,L:b%,L:s%,d%,f%)

 Creates a boot sector for the disk in memory

 b% address of a 512 byte buffer for producing the
 boot sector
 s% serial number that forms part of the boot sector
 -1: previous serial retained
 >24 bits: random number returned
 d% disk type (tracks/sides)
 0:40 tracks,single sided (180K)
 1:40 tracks,double sided (360K, IBM)
 2:80 tracks, single side (360K)
 3:80 tracks, double sided (720K)
 f% 0:non executable boot sector
 1:executable
 -1:leave unchanged

r%=XBIOS(19,L:b%,L:f%,d%,sec%,t%,side%,n%)

 Verifies the disk contents

 b% address of the memory area with which a comparison
 is made.
 f% not used
 d% disk drive number
 sec% start sector
 t% track number
 side% disk side
 n% number of sectors

~XBIOS(20)

 Calls the hardcopy routine and thus dumps the screen to
 printer.

r%=XBIOS(21,c%,s%)

 Configure cursor.

 r% when c%=5 returns the cursor blink rate
 c% 0: Hide cursor
 1: Show cursor
 2: blink cursor
 3: solid cursor
 4: blink rate set in s%
 5: see r%
 s% when c%=4, blink rate set to s%

~XBIOS(22,L:t%)

 Sets date and time

 t% Bits 0-4: seconds
 5-19: minutes
 11-15: hours
 16-20: day
 21-24: month
 25-31: year - 1980

r%=XBIOS(23)

 returns date and time

 r% see XBIOS(22) for bit settings

~XBIOS(24)

 re installs the original keyboard allocation (see
 XBIOS(16))

XBIOS(25,n%,L:adr%)

 writes bytes from memory to the keyboard processor (IKBD)

 n% number bytes-1 to be sent
 adr% address where the data to be sent is stored

~XBIOS(26,i%)

 Disables an MFP interrupt.

 i% interrupt number (0-15) to be disabled

~XBIOS(27,i%)

 enables an MFP interrupt.

 i% interrupt number (0-15) to be enabled

~XBIOS(28,d%,reg%)

 reads and writes from and to the sound chip register

 r% returns register value when reading
 d% value to be writen (8 bits)
 r% register number (0-15), bit 7 defines write mode
 when set.

~XBIOS(29,b%)

 sets the bit of port A on the register of the sound chip to
 zero

 b% bit pattern wicj is OR'ed with existing contents.

~XBIOS(30,b%)

 sets the port A bit of the sound chip register to 1

 b% bit pattern which is ANDed with the existing
 contents.

XBIOS(31,t%,c%,d%,L:adr%)

 Sets the MFP timers

 t% number of the timer (0 to 3)
 c% control register
 d% data register
 adr% address of the timer interrupt routine

~XBIOS(32,L:adr%)

 Starts a sound sequence, whic is processed in the interrupt

 adr% address of the staorage area

r%=XBIOS(33,c%)

 sets or reads the printer parameters

 r% current configuration when c%=1
 c% Bit set reset
 0 Dot Matrix Daisy Wheel
 1 Monochrome Colour
 2 Atari Epson
 3 Parallel RS-232
 4 Continuous Single sheet

r%=XBIOS(34)

 returns address of table with vectors to the keyboard and
 MIDI processor.

 r% returned address

r%=XBIOS(35,a%,w%)

 sets and reads keyboard repeat rate

 r% current data
 bits 0-7 repeat rate
 8-15 time of repeat delay
 a% repeat delay
 w% repeat rate

~XBIOS(36,L:adr%)

 Hardcopy routine returns parameter block address

 adr% address of a parameter block for the hardcopy
 routine.

~XBIOS(37)

 waits for next vertical blank interrupt.

~XBIOS(38,L:adr%)

 calls an assembler routine in supervisor mode

 adr% address of assembler routine

~XBIOS(39)

 turns off AES if not in ROM

r%=XBIOS(64,b%)

 contols and interrogates the blitter

 r% b%=-1 current blitter status
 bit 1 : blitter there
XOR
Syntax: x XOR y
Action: Logical exclusive OR operator

XOR()
Syntax: XOR(x,y)
Action: Sets those bits in x that are different in x and y.

_DATA
Syntax: _DATA
 _DATA=
Action: Specifies the position of the DATA pointer. _DATA is 0 if
 the next READ would result in an out of data message.

~
Syntax: ~function
Action: Similar to VOID. Forget the returned value

End of File

